

Модули измерения температуры и влажности серий Т/Н (блочные ПЛК)

Руководство по эксплуатации

ред. 07/2022

optimusdrive.ru

Содержание

Руководство по эксплуатации модулей измерения температуры и влажности	
1. Список моделей и габаритные размеры	3
2. Сигналы индикаторов	4
3. Спецификация по источникам питания	4
4. Условия эксплуатации	4
5. Основные характеристики модулей	5
5.1 Основные характеристики цифровых модулей измерения температуры и влажности	5
5.2 Основные характеристики модулей термометров сопротивления и термопар	5
6. Схемы подключения	5
6.1 Цифровые модули измерения температуры и влажности: схемы подключения одиночных / нескольких датчиков DS18B20, RW1820, DS1990	5
6.2 Схемы подключения термометров сопротивления и термопар	6
7. Схемы клемм	6
8. Таблица параметров модулей	6
8.1 Таблица параметров цифровых модулей измерения температуры и влажности	6
8.2 Таблица параметров для 4-канальных модулей термосопротивлений и термопар	7
8.3 Таблица параметров для 8-канальных модулей термосопротивлений и термопар	8
9. Монтаж и установка	9

Применение модулей измерения температуры и влажности

1. Подкл	ючение модулей расширения через параллельный порт ЦПУ ПЛК	10
1.1	Питание модуля	10
1.2	Модули измерения температуры и влажности не нуждаются в написании программы преобразования	10
1.3	Программа ПЛК	11
1.5	Когда инженерное значение не используется, значение кода по умолчанию составляет 0 ~ 32000	11
1.6	Пример применения контрольного регистра CR модуля: Чтение аварийного сигнала об отключении канала модуля	12
2. Испол	ьзование модуля для удаленного ввода/вывода	12
2.1	Питание модуля	12
22	Коммуникационный порт	12
2.3	Протокол связи и параметры по умолчанию	12
2.4	Метод настройки параметров модуля, когда он используется как станция удаленного ввода/вывода	13
2.5	Пример конфигурации параметров: Настройка удаленного модуля с помощью ПО	13
2.6	Пример удаленного ввода-вывода (RS485): ПЛК считывает 4 значения температуры от модуля H04RC по связи	15
27	Пример приложения удаленного ввода-вывода (режим Ethernet): ПЛК считывает и записывает входные и выходные значения каждого канала модуля H08RC-е	15
2.8	введение в функции и методы применения модуля H04D1	16
29	ведение в функции и методы применения модуля H32D1	17

- Эксплуатация прибора допускается только квалифицированным персоналом
- Производитель оставляет за собой право вносить изменения в конструкцию прибора и данное Руководство без уведомления

Руководство по эксплуатации модулей измерения температуры и влажности

1. Список моделей и габаритные размеры

Модель Ethernet	24B DC	Модель	24B DC	Габариты
		H04DT	0.02A	20×05×92 мм
		H32DT	0.04A	30×95×62 MM
		H04TC	0.07A	
		H08TC	0.07A	70×95×82 мм
		H04RC	0.07A	
H08RC-e	0.1A	H08RC	0.07A	93×95×82 мм

Габариты H04DT / H32DT

OPTIMUS

1. Описание клемм	6. Съемная клеммная колодка
2. Индикатор аналоговых входов	7. Порт модулей расширения
3. Наименование модели	8. Прозрачная крышка клеммной колодки
4. PWR индикатор питания модуля, LINK индикатор связи модуля	9. Шильдик модуля
5. Фиксатор крепления на DIN-рейку	10. Монтаж на 35-мм DIN-рейку

Габариты H04TC, H04RC, H08TC, H08RC

1. Крепежные отверстия	8. Съемная клеммная колодка
2. Съемная клеммная колодка	9. Индикатор аналоговых входов
3. Обозначения клемм	10. Порт связи RS485
4. Порт модулей раширения	11. PWR индикатор питания, LINK индикатор связи
5. DIP-переключатель (4-канальный модуль не имеет DIP-переключателей)	12. Порт модулей расширения
6. Клеммы внешнего питания (DC24V и AC220V, в основном, питание ЦПУ ПЛК)	13. Прозрачная крышка клеммных колодок модуля
7. Защелка крепления на DIN-рейку	14. Шильдик модуля
	15. Крепление на 35-мм DIN-рейку

2. Сигналы индикаторов

2.1 Индикаторы для моделей H04DT, H32DT

- 1 РИЯ: индикатор питания, цвет зеленый. Постоянное свечение питание в норме. Нет свечения питание 2 отсутствует.
 - LIŃК: индикатор состояний. Три цвета (красный, желтый, зеленый), обозначают:

Состояние работы модуля	Состояние шины модуля	Состояние индикатора LINK
	Нет связи с модулем	Не горит
Нормальная работа	ЦПУ идентифицировало модуль, но связи с ним нет	Постоянно горит зеленый
	Есть связь по последовательному (H32DT) или параллельному порту	Мигает зеленый: по 30 мс включен / выключен
Не удалось обновить прошивку, обновите прошивку модуля	Нет связи по последовательному или параллельному порту	Красный мерцает: индикатор горит 0,5 с и не горит 0,5 с
	Есть связь по последовательному или параллельному порту	Красный гаснет и дрожит попеременно: индикатор выключен 0,5 с и дрожание 0,5 с

2.2 Индикаторы для моделей H04TC, H04RC, H08TC, H08RC

🕧 PWR: индикатор питания, цвет зеленый. Постоянное свечение – питание в норме. Нет свечения – питание Отсутствует.
LINK: индикатор состояний. Три цвета (красный, желтый, зеленый), обозначают:

Состояние работы модуля	Состояние шины модуля	Состояние индикатора LINK
	Нет связи с модулем	Не горит
Нормальная работа	ЦПУ идентифицировало модуль, но связи с ним нет	Постоянно горит зеленый
	Есть связь по последовательному или параллельному порту	Мигает зеленый: по 30 мс включен / выключен
Источник питания недостаточен, подключите внешний источник	Нет связи по последовательному или параллельному порту	Желтый мерцает: индикатор горит 0,5 с и не горит 0,5 с
	Есть связь по последовательному или параллельному порту	Желтый гаснет и дрожит попеременно: индикатор выключен 0,5 с и дрожание 0,5 с
Не удалось обновить прошивку, обновите прошивку модуля	Нет связи по последовательному или параллельному порту	Красный мерцает: индикатор горит 0,5 с и не горит 0,5 с
	Есть связь по последовательному или параллельному порту	Красный гаснет и дрожит попеременно: индикатор выключен 0,5 с и дрожание 0,5 с
Аппаратная неисправность	Нет связи по последовательному или параллельному порту	Красный горит постоянно
	Есть связь по последовательному или параллельному порту	Быстрое дрожание красного: индикатор горит 30 мс и не горит 30 мс

Индикаторы RJ45 Ethernet: два светодиода Ethernet, зеленый и желтый, показаны на рисунке: 3

Цвет	Состояние
Зеленый горит постоянно	Физическое соединение ТСР-модуля и внешнего устройства нормальное
Зеленый гаснет	Модуль TCP не может подключиться к внешнему устройству или сам модуль неисправен
Желтый мигает	Модуль TCP нормально подключен к внешнему устройству, а частота мигания указывает на скорость передачи данных. Когда скорость высокая, человеческому глазу нелегко различить, в это время желтый горит ярко
Желтый гаснет	Нет связи между ТСР-модулем и внешним устройством

3. Спецификация по источникам питания

Пункт	Источники постоянного тока	Источники переменного тока
Напряжение источника питания	24VDC -15%~+20%	100~240VAC
Частота источника питания		50~60Гц
Пиковое значение	MAX 20A 1.5мс @24VDC	20A 1.5ms MAX @220VAC
Время отключения	10мс или меньше	10мс или меньше @220VAC
Изоляция	0.3A, 250B	2A, 250B
Выходное напряжение 24 В (для входов и расширения)	Нет	24В, -15%~+15%, 200мА (макс.)
Тип изоляции	Нет изоляции	Трансформаторная изоляция или оптоэлектронная изоляция, 1500VAC/1 мин.
Защита по питанию	Обратная полярность по питанию, повышенное напряжение	Защита от перегрузки по току на выходе 24 В постоянного тока

4. Условия эксплуатации

Параметр	Характеристика
Температура/влажность	Рабочая температура:0~+55°С Температура хранения:-25~+70°С Влажность: 5~95%RH, без конденсации
Виброустойчивость	10~57 Гц, амплитуда =0.075мм, 57Гц~150Гц ускорение =1G, 10 раз для осей X, Y и Z
Ударопрочность	15G, длительность =11мс, 6 раз для осей X, Y и Z
Помехоустойчивость	Переменный ток EFT:±2500V Импульс:±1000V
Сопротивление перенапряжению	Сопротивление перенапряжению 1500 В переменного тока / 1 мин между клеммой переменного тока и клеммой PE, 500 В переменного тока / 1 мин между клеммой постоянного тока и клеммой PE
Сопротивление изоляции	≧5МΩ между клеммой переменного тока и всеми точками входа / выхода на клемме РЕ при 500 В постоянного тока
Рабочая среда	Избегайте пыли, влаги, коррозии, ударов электрическим током и внешних ударов.

5. Основные характеристики модулей

5.1 Цифровые модули измерения температуры и влажности

Пункт	H04DT	H32DT
Входной интерфейс	DS18B20, RW1820, DS1990, SHT1x, SHT7x	Датчики DS18B20, RW1820, DS1990
Число входов	4 канала 4 точки	2 канала, каждый канал 16 точек
Интерфейс связи	Нет	RS485
Скорость связи	Нет	2400~115200 бит/с
Протокол связи	Нет	Стандартный Modbus
Питание модуля	Питание от ЦПУ ПЛК	Питание от ЦПУ ПЛК или независимый внешний источник 24 В DC
Дистанция удаления	≤200м (сопротивление 50Ω)	≤200м (сопротивление 50Ω)
Диапазоны измерения	DS18B20:-55~+125°C SHT11:-40~+123.8°C 0~100% отн. влажности	DS18B20 ∶ -55~+125°C
Тип изоляции	Нет изоляции между каналами, оптическая изоляция дискретных и аналоговых каналов	

5.2 Модули термометров сопротивления и термопар

Пункт	Вход термометра сопротивления	Вход термопары	
Входной интерфейс	Pt100, Pt1000, Cu50, Cu100	S, K, E, J, B, N, R, Wre3/25, Wre5/26, [0, 20]MB, [0, 50]MB, [0, 100]MB	
Разрешение	0.1°C	0.1°C	
Выходной импеданс нагрузки	6ΜΩ	6ΜΩ	
Макс. входной диапазон	±13B	±30мА	
Индикация выходов	Свечение индикатора – есть входной сигнал, нет свечения – входной сигнал отсутствует		
Время отклика	560мс/4 канала, 880мс/8 каналов		
Дискретный входной диапазон	16 бит, диапазон цифровой шкалы:0~32000		
Погрешность	0.1% полного диапазона		
Питание	ЦПУ использует внутренний источник питания, модули расширения используют внешний источник питания 24 В постоянного тока ±10% 5 ВА		
Режим изоляции	Оптоэлектронная изоляция, Нет изоляции между каналами, оптическая изоляция дискретных и аналоговых каналов		
Потребляемая мощность	24 В постоянного тока ±20%,50мА (макс.)		

6. Схема подключения

6.1 Цифровые модули измерения температуры и влажности: одиночный / групповой монтаж датчиков DS18B20,

RW1820, DS1990

Сторона ПЛК

Экранированный провод (один конец - заземление)

Схема подключения датчиков SHT1X, SHT7X

Сторона ПЛК

Экранированный провод (один конец - заземление)

Примечания:

• VDD (Vdd+) и (Vdd-) — клеммы питания датчика, кабели которого могут быть проложены рядом;

• Описание контактов датчиков DS18B20, RW1820, DS1990, SHT1X, SHT7X см. в Руководствах по эксплуатации для датчиков;

• В качестве кабеля между датчиками DS18B20, RW1820, DS1990 и модулем рекомендуется использовать экранированную 4-х жильную витую пару; один провод кабеля должен быть подключен к заземлению (Vdd-) и линиям передачи сигнала (DT), другой провод кабеля может быть подключен к источнику питания и заземлению (Vdd-), экран одной точкой заземлен на источнике.

6.2 Схемы подключения модулей термометров сопротивления и термопар

Термопара Канал 1 Экранированный провод (один конец - заземление) Термосопротивление

7. Схема клемм

8. Таблица параметров модулей

8.1 Параметры цифровых модулей измерения температуры и влажности

Примечание: Контрольные регистры CR с серым фоном доступны только для чтения, с белым фоном доступны и для чтения и для записи. Обращение в программе командами FROM/TO. При чтении/записи модуля по интерфейсу номера CR соответствуют шестнадцатеричным адресам регистров Modbus.

Код CR	Функции H04DT	Код CR	Функции Н32DT						
00H	Младший байт – код модуля и старший байт – номер вер	сии модуля							
01H	Адрес связи								
02H	Протокол связи: Младшие 4 бита младшего байта: 0 - N,8,2 для RTU, 1 - E,8,1 для RTU, 2 - O,8,1 для RTU, 3 - N,7,2 для ASCII, 4 - E,7,1 для ASCII, 5 - O,7,1 для ASCII, 6 - N,8, 1 для RTU Старшие 4 бита младшего байта: 0 – 2400, 1 – 4800, 2 – 9600, 3 – 19200, 4 – 38400, 5 – 57600, 6 – 115200								
03H~06H	Наименование модуля								
07H~08H	IP адрес по умолчанию: 192.168.1.111								
09~0AH	Зарезервировано								
0BH	Старший байт маски подсети (b3~b0,1 означает 255, 0 оз байт зарезервирован	вначает 0, нап	ример, маска подсети 255.255.255.0, b3~b0=1110), младший						
0CH~0EH	Зарезервировано								
0FH	Код ошибки: 0-Нет ошибки, 1-Неверная идентификация г данным, 4-Отсутствие внешнего источника питания 24 В	прошивки, 2-H	еполная прошивка, 3-Отсутствие доступа к системным						
10H~13H	Входное значение температуры каналы 1~4	10H~1FH	Значение температуры в тракте 1~16 канала 1						
14H~17H	Входное значение температуры каналы 1~4	20H~2FH	Значение температуры в тракте 1~16 канала 2						
18H~1BH	Тип сигнала каналовІ 1~4 (0-DS18B20, RW1820, DS1990 , 1-SHT1x, SHT7x)	30H	Биты данных аналоговых/дискретных данных канала 1						
1CH	Идентификация пользовательского инженерного значения	31H	Биты данных аналоговых/дискретных данных канала 2						
1DH~20H	Нижний предел данных каналов 1~4	32H	Аварийный сигнал отключения по температуре в тракте 1~16 канала 1, каждый бит указывает на 1 канал, 0- нормальная работа, 1-отключение						
21H~24H	Верхний предел данных каналов 1~4	33H	Аварийный сигнал отключения по температуре в тракте 1~16 канала 2, каждый бит указывает на 1 канал, 0- нормальная работа, 1-отключение						
25H~28H	Биты данных аналоговых/дискретных данных каналов 1~4	34H	Номер конфигурации канала 1						
29H~2CH	Коррекция нуля каналов 1~4	35H	Номер конфигурации канала 2						
2DH	Аварийный сигнал отключения датчика каналов 1~4, каждый бит указывает на 1 канал, 0- нормальное состояние, 1- отключение	36~75H	Серийные номера в тракте 1~16 канала 1, каждый серийный номер занимает 4 регистра						

Код CR	Функции H04DT	Код CR	Функции H32DT
2EH~2FH	Зарезервировано	76~B5H	Серийные номера в тракте 1~16 канала 2, каждый серийный номер занимает 4 регистра
30H-3FH	Серийные номера каналов 1~4, каждый серийный номер занимает 4 регистра	B6~C5H	Зарезервировано
40H-4FH	Зарезервировано	C6H	Канал 1 очищает счетчики отключений питания в конфигурации
		C7H	Канал 2 очищает счетчики отключений питания в конфигурации

8.2 Таблица параметров 4-канальных модулей термометров сопротивления и термопар

Примечание: Контрольные регистры CR с серым фоном доступны только для чтения, с белым фоном доступны и для чтения и для записи. Обращение в программе командами FROM/TO. При чтении/записи модуля по интерфейсу номера CR соответствуют шестнадцатеричным адресам регистров Modbus.

	Функция			
Код CR	H04RC	H04TC		
00H	Младший байт – код модуля и старший байт – номер ве	рсии модуля		
01H	Адрес связи			
02H	Протокол связи: Младшие 4 бита младшего байта: 0 - N E,7,1 для ASCII, 5 - О,7,1 для ASCII, 6 - N,8, 1 для RTU Старшие 4 бита младшего байта: 0 – 2400, 1 – 4800, 2 –	,8,2 для RTU, 1 - E,8,1 для RTU, 2 - O,8,1 для RTU, 3 - N,7,2 для ASCII, 4 - 9600, 3 – 19200, 4 – 38400, 5 – 57600, 6 – 115200		
03H~06H	Наименование модуля			
07H~08H	IP адрес по умолчанию: 192.168.1.111			
09~0AH	Зарезервировано			
0BH	Старший байт маски подсети (b3~b0,1 означает 255, 0 с байт зарезервирован	значает 0, например, маска подсети 255.255.255.0, b3~b0=1110), младший		
0CH-0EH	Зарезервировано			
0FH	Код ошибки: 0-Нет ошибки, 1-Неверная идентификация данным, 4-Отсутствие внешнего источника питания 24 Е	прошивки, 2-Неполная прошивка, 3-Отсутствие доступа к системным		
10H	Канал 1. Входное значение	Канал 1. Входное значение		
11H	Канал 2. Входное значение	Канал 2. Входное значение		
12H	Канал 3. Входное значение	Канал 3. Входное значение		
13H	Канал 4. Входное значение	Канал 4. Входное значение		
14H	Канал 1. Тип сигнала, прим. 2	Канал 1. Тип сигнала, прим. 3		
15H	Канал 2. Тип сигнала, прим. 2	Канал 2. Тип сигнала, прим. 3		
16H	Канал 3. Тип сигнала, прим. 2	Канал 3. Тип сигнала, прим. 3		
17H	Канал 4. Тип сигнала, прим. 2	Канал 4. Тип сигнала, прим. 3		
18H	Используемый знак инженерного значения, прим. 5	Используемый знак инженерного значения, прим. 5		
19H	Канал 1. Нижний предел инженерного значения	Канал 1. Нижний предел инженерного значения		
1AH	Канал 2. Нижний предел инженерного значения	Канал 2. Нижний предел инженерного значения		
1BH	Канал 3. Нижний предел инженерного значения	Канал 3. Нижний предел инженерного значения		
1CH	Канал 4. Нижний предел инженерного значения	Канал 4. Нижний предел инженерного значения		
1DH	Канал 1. Верхний предел инженерного значения	Канал 1. Верхний предел инженерного значения		
1EH	Канал 2. Верхний предел инженерного значения	Канал 2. Верхний предел инженерного значения		
1FH	Канал 3. Верхний предел инженерного значения	Канал 3. Верхний предел инженерного значения		
20H	Канал 4. Верхний предел инженерного значения	Канал 4. Верхний предел инженерного значения		
21H	Канал 1. Количество замеров, прим. 1	Канал 1. Количество замеров, прим. 1		
22H	Канал 2. Количество замеров, прим. 1	Канал 2. Количество замеров, прим. 1		
23H	Канал 3. Количество замеров, прим. 1	Канал 3. Количество замеров, прим. 1		
24H	Канал 4. Количество замеров, прим. 1	Канал 4. Количество замеров, прим. 1		
25H	Канал 1. Смещение нуля	Канал 1. Смещение нуля		
26H	Канал 2. Смещение нуля	Канал 2. Смещение нуля		
27H	Канал 3. Смещение нуля	Канал 3. Смещение нуля		
28H	Канал 4. Смещение нуля	Канал 4. Смещение нуля		
29H	Канал 1~4. Тревожный сигнал разъединения входной цепи, прим. 4	Канал 1~4. Тревожный сигнал разъединения входной цепи, прим. 4		
2AH	Зарезервировано	Зарезервировано		
2BH~2FH				

8.3 Таблица параметров 8-канальных модулей термометров сопротивления и термопар

a Ta	блица параметров 8-канальных модулей тер	иометров сопротивления и термопар
Код CR		Функция
	H08RC	H08TC
00H	Младший байт – код модуля и старший байт – номе	р версии модуля
01H	Адрес связи	
02H	Іротокол связи: Младшие 4 бита младшего байта: (E,7,1 для ASCII, 5 - 0,7,1 для ASCII, 6 - N,8, 1 для R Старшие 4 бита младшего байта: 0 – 2400, 1 – 4800	⊢ N,8,2 для RTU, 1 - E,8,1 для RTU, 2 - O,8,1 для RTU, 3 - N,7,2 для ASCII, 4 ГU , 2 – 9600, 3 – 19200, 4 – 38400, 5 – 57600, 6 – 115200
03H~06H	Наименование модуля	
07H~08H	IP адрес по умолчанию: 192.168.1.111	
09~0AH	Зарезервировано	
0BH	Старший байт маски подсети (b3~b0,1 означает 255	, 0 означает 0, например, маска подсети 255.255.255.0, b3~b0=1110), младш
	оаит зарезервирован Зарезервировано	
	Код ошибки: 0-Нет ошибки. 1-Неверная идентифика	ция прошивки. 2-Неполная прошивка. 3-Отсутствие доступа к системным
UFH	данным, 4-Отсутствие внешнего источника питания	24 B
10H	Канал 1. Входное значение	Канал 1. Входное значение
11H	Канал 2. Входное значение	Канал 2. Входное значение
12H	Канал 3. Входное значение	Канал 3. Входное значение
13H	Канал 4. Входное значение	Канал 4. Входное значение
14H	Канал 5. Входное значение	Канал 5. Входное значение
15H	Канал 6. Входное значение	Канал 6. Входное значение
16H	Канал 7. Входное значение	Канал 7. Входное значение
17H	Канал 8. Входное значение	Канал 8. Входное значение
18H	Канал 1. Тип сигнала, прим. 2	Канал 1. Тип сигнала, прим. 3
19H	Канал 2. Тип сигнала, прим. 2	Канал 2. Тип сигнала, прим. 3
1AH	Канал 3. Тип сигнала, прим. 2	Канал 3. Тип сигнала, прим. 3
1BH	Канал 4. Тип сигнала, прим. 2	Канал 4. Тип сигнала, прим. 3
1CH	Канал 5. Тип сигнала, прим. 2	Канал 5. Тип сигнала, прим. 3
1DH	Канал 6. Тип сигнала, прим. 2	Канал 6. Тип сигнала, прим. 3
1EH	Канал 7. Тип сигнала, прим. 2	Канал 7. Тип сигнала, прим. 3
1FH	Канал 8. Тип сигнала, прим. 2	Канал 8. Тип сигнала, прим. 3
20H	Используемый знак инженерного значения, прим. 5	Используемый знак инженерного значения, прим. 5
21H	Канал 1. Нижний предел инженерного значения	Канал 1. Нижний предел инженерного значения
22H	Канал 2. Нижний предел инженерного значения	Канал 2. Нижний предел инженерного значения
23H	Канал 3. Нижний предел инженерного значения	Канал 3. Нижний предел инженерного значения
24H	Канал 4. Нижний предел инженерного значения	Канал 4. Нижний предел инженерного значения
25H	Канал 5. Нижний предел инженерного значения	Канал 5. Нижний предел инженерного значения
26H	Канал 6. Нижний предел инженерного значения	Канал 6. Нижний предел инженерного значения
27H	Канал 7. Нижний предел инженерного значения	Канал 7. Нижний предел инженерного значения
28H	Канал 8. Нижний предел инженерного значения	Канал 8. Нижний предел инженерного значения
29H	Канал 1. Верхний предел инженерного значения	Канал 1. Верхний предел инженерного значения
2AH	Канал 2. Верхний предел инженерного значения	Канал 2. Верхний предел инженерного значения
2BH	Канал 3. Верхний предел инженерного значения	Канал 3. Верхний предел инженерного значения
2CH	Канал 4. Верхний предел инженерного значения	Канал 4. Верхний предел инженерного значения
2DH	Канал 5. Верхний предел инженерного значения	Канал 5. Верхний предел инженерного значения
2EH	Канал 6. Верхний предел инженерного значения	Канал 6. Верхний предел инженерного значения
2FH	Канал 7. Верхний предел инженерного значения	Канал 7. Верхний предел инженерного значения
30H	Канал 8. Верхний предел инженерного значения	Канал 8. Верхний предел инженерного значения
31H	Канал 1. Количество замеров, прим. 1	Канал 1. Количество замеров, прим. 1
32H	Канал 2. Количество замеров, прим. 1	Канал 2. Количество замеров, прим. 1
33H	Канал 3. Количество замеров, прим. 1	Канал 3. Количество замеров, прим. 1
34H	Канал 4. Количество замеров, прим. 1	Канал 4. Количество замеров, прим. 1
35H	Канал 5. Количество замеров, прим. 1	Канал 5. Количество замеров, прим. 1
36H	Канал 6. Количество замеров, прим. 1	Канал 6. Количество замеров, прим. 1
37H	Канал 7. Количество замеров, прим. 1	Канал 7. Количество замеров, прим. 1
38H	Канал 8. Количество замеров, прим. 1	Канал 8. Количество замеров, прим. 1
0.011	Канал 1. Смещение нула	Канал 1. Смещение нула
39H	Канал Г. Смещение нуля	Капал Г. Омещение пуля

	Функция				
код СК	H08RC	H08TC			
3BH	Канал 3. Смещение нуля	Канал 3. Смещение нуля			
3CH	Канал 4. Смещение нуля	Канал 4. Смещение нуля			
3DH	Канал 5. Смещение нуля	Канал 5. Смещение нуля			
3EH	Канал 6. Смещение нуля	Канал 6. Смещение нуля			
3FH	Канал 7. Смещение нуля	Канал 7. Смещение нуля			
40H	Канал 8. Смещение нуля	Канал 8. Смещение нуля			
41H	Канал 1~8. Тревожный сигнал разъединения входной цепи, прим. 4	Канал 1~8. Тревожный сигнал разъединения входной цепи, прим. 4			
42H~4FH	Зарезервировано	Зарезервировано			

Примечания:

- Количество замеров (для осреднения): 0 2 раза, 1 4 раза, 2 8 раз, 3 16 раз, 4 32 раза, 5 64 раза, 6 128 раз, 7 256 раз
- (2) Тип сигнала RTD: 0 Pt100, 1 Pt1000, 2 Cu50, 3 Cu100
- Этип сигнала термопары: 0 S, 1 K, 2 T, 3 E, 4 J, 5 B, 6 N, 7 R, 8 Wre3/25, 9- Wre5/26, 10 [0,20]мВ, 11 [0,50]мВ, 12 [0,100]мВ
- (4) Аварийный сигнал отключения: каждый бит указывает на 1 канал, 0-нормальный, 1-отключение
- (5) Использование инженерного значения: каждый бит указывает на 1 канал, 0-нет, 1-да

9. Монтаж и установка

При монтаже ПЛК должен быть установлен в закрытом шкафу. Для отвода тепла обеспечьте минимальный зазор 50 мм между корпусом ПЛК и всеми стенками шкафа (см. рисунок).

Способ монтажа на DIN-рейку: используйте стандартную DIN-рейку 35 мм.

Метод подключения модулей расширения по внутренней шине ЦПУ:

Подключение модулей расширения по внутренней шине ЦПУ осуществляется путём шлейфов, которые идут в комплекте с каждым модулем расширения. В правой части ЦПУ необходимо открыть крышку, под которой располагается разъём для подключения шлейфа первого модуля. Вставить и защёлкнуть до упора ответную часть разъёма на шлейфе в гнездо на плате ЦПУ. Далее от ЦПУ шлейф идёт к разъёму с левой стороны модуля, для доступа к которому также необходимо открыть крышку и вставить разъём на шлейфе в гнездо на плате цПУ. Далее от ЦПУ шлейф идёт к разъёму с левой стороны модуля, для доступа к которому также необходимо открыть крышку и вставить разъём на шлейфе в гнездо на плате модуля. После этого крышки ставятся на место. Следующий модуль подключается аналогичным образом через правый разъём предыдущего модуля.

Применение модулей измерения температуры и влажности

1. Подключение модулей расширения через внутреннюю (параллельную) шину ЦПУ

1.1 Питание модуля

Модуль измерения температуры и влажности может быть модулем расширения для любого ЦПУ ПЛК; Когда модуль подключен непосредственно к ЦПУ ПЛК по параллельной шине, нет необходимости использовать внешний источник питания, модуль питается от параллельного порта ЦПУ ПЛК, если питания модуля недостаточно (индикатор питания PWR не горит), то в зависимости от модели, модуль может питаться от 24 В постоянного тока или 220 В переменного тока. Когда модуль подключается по внутренней шине, рекомендуется использовать модуль 24 В постоянного тока. Примеры подключения питания модуля:

- П К ЦПУ ПЛК подключено 7 модулей, индикаторы PWR первых пяти модулей горят, указывая на нормальное питание модулей, если индикаторы PWR 6-го и 7-го модулей не горят, что указывает на необходимость обеспечения этим модулям питания 24 В постоянного тока от внешнего источника.
- (2) Когда ЦПУ ПЛК соединен с 1 модулем расширения, ЦПУ ПЛК обеспечивает питание через параллельный порт, на модуле расширения загорится индикатор питания PWR. Если к модулю расширения дополнительно подключить внешний источник питания, модуль расширения автоматически определит это и отдаст приоритет внешнему источнику питания.
- 1.2 Модули измерения температуры и влажности не нуждаются в написании программы преобразования, считывание текущего значения температуры происходит непосредственно при доступе к датчику

Например, к ЦПУ T16S2T подключено три модуля: H04TC, H04RC и H08TC слева направо со следующими параметрами: Модуль термопары H04TC входной канал 1, тип сигнала К, входной канал 2, тип сигнала E; Модуль теплового сопротивления H04RC входной канал 1, тип сигнала PT100, входной канал H04RC 2, тип сигнала PT1000:

Сначала войдите в строку меню программного обеспечения для программирования ПЛК - просмотр - аппаратная конфигурация, в соответствии с внешним порядком фактических модулей, чтобы добавить модели модулей, после добавления аналоговые адреса будут автоматически расположены, как показано ниже:

	Big Hardware configuration									
Index	Module type	X Component	Y Component	Al Component	AQ Component	Other	1			
0 🖾	T16S2T/P(-e)	X0 - X7	Y0 - Y7			COM1-2 HSC0-1 PLS0-1				
1	H04TC			AI0 - AI3						
2	H04RC			AI4 - AI7						
3	H08TC			AI8 - AI15						

Модуль измерения температуры и влажности не требует написания какой-либо программы преобразования, для вышеуказанной измеряемой температуры нам нужно только выбрать соответствующий тип сигнала канала, проверить использование инженерного значения и полного порядкового номера по умолчанию, например, вышеуказанный модуль H04TC входной канал 1, тип сигнала К; входной канал 2, тип сигнала Е, пока мы устанавливаем аппаратную конфигурацию:

Analo	og inputs					
	Signal type	Use engineering units	Lower limit	Upper limit	Sample times	Zero point
AIO	K thermocouple		-2000 🗢	13000 🗢	64 ~	0 🗘
AI1	E thermocouple	✓	-2000 🗘	10000 😂	64 ~	0 🗘
AI2	S thermocouple K thermocouple		-2000 🗘	10000 😂	64 ~	0 🗘
AI3	T thermocouple E thermocouple		-2000 🗘	10000 🗘	64 ~	0 🗘
	J thermocouple B thermocouple N thermocouple R thermocouple WRe3/25 thermocouple WRe5/26 thermocouple [0,20]mV [0,50]mV [0,100]mV					

Таким образом, после настройки, подключите термопару типа К к каналу 1, затем непосредственно считывайте значение регистра Al0, Al0 = 123, то есть фактическое значение температуры 12,3°C. Таким же образом подключите термопару типа Е к каналу 2, считайте значение Al2, например, Al2 = 3456, то есть фактическое значение температуры 345,6°C. Поскольку мы знаем, что для модулей температуры и влажности тип сигнала каждого канала может быть установлен произвольно, поэтому для модуля H04RC после настройки мы можем считывать значение температуры непосредственно при подключении соответствующего датчика к каналу.

1.3 Программа ПЛК

Если ை хотите написать программу аварийной сигнализации, когда температура превышает установленное значение (например, когда температура превышает 125 °C, будет подан сигнал тревоги), программа ПЛК выглядит следующим образом:

//Network 1 The temperature above 125, alarm output

1.4 Отображение значения температуры на SCADA или на панели оператора

Если необходимо отобразить текущее давление на SCADA или панели оператора, нужно установить один разряд в дробной части:

sic Advanced Shape Common				
Setting	Display			
Read variable	Display the minus sign	🗌 The con	ntent is shown as *	
海为PLC_1. AIO	Show thousands placeholder(,)			
Input	Shwo left label	Show ri	ight label	
. Write variable is different from reade variable	e	p:_1, 1, 1	.1	
Written variable	Left label	hight lab	eT	
	T			1200
Input maximum	Integer digits	Decimal d	igits	
999				
Input minimum	Text alignment	Font		
-999	Center	~	Selectfont	
Keyboard type	Text color	7 😼		
Numeric keyboard	v	1		
Keyboard position				
center				

Так что, когда ПЛК считывает значение AI0, AI0=123, то есть фактическое значение 12,3°С, нет необходимости в обработке данных в ПЛК и конфигурирования, достаточно установить 1 десятичный знак на дисплее, тогда значение автоматически уменьшится в 10 раз, отображая значение 12,3, то есть фактическую температуру 12,3°С.

1.5 Когда инженерное значение не используется, значение кода по умолчанию составляет 0 ~ 32000

При использовании инженерного значения линейное преобразование определяется нижним и верхним предельными значениями, программа преобразует значения автоматически. Когда инженерное значение не используется, все типы унифицируются, чтобы соответствовать кодовому значению в диапазоне 0~32000. В случае измерения температуры, процесс может быть выполнен в соответствии с формулой линейного преобразования: Out = (In - InDw) * (OutUp- OutDw) / (InUp-InDw) + OutDw в программе преобразования, или используется инструкция линейного преобразования SC для прямого расчета.

Рекомендуется использование инженерных значений, т.к. модули аналоговых входов/выходов удобно использовать без написания программы.

1.6 Пример применения контрольного регистра CR модуля: Чтение аварийного сигнала об отключении канала модуля

В этом примере, для чтения информации об отключении внешнего датчика модуля H04TC, данные по отключению входных каналов 1-4 модуля H04TC сохраняются в CR29, в виде 29H (шестнадцатеричный формат), десятичный формат, соответственно, 41. Дополнительное содержимое CR может можно найти в интерактивной справке по программному обеспечению - руководстве по оборудованию - параметрах модуля расширения в соответствующей модели (oftware online help - hardware manual - expansion module parameters within the corresponding model). Эта программа выглядит следующим образом:

Slot: Номер позиции, H04TC – первый модуль, заполняется значение 1;

CR: Аварийный сигнал отключения модуля CR41, то есть 29H (шестнадцатеричное значение) = 41 (десятичное значение), можно напрямую ввести 41 или 0x29 в инструкции CR;

N: Число для чтения, 1 регистр на 16 бит, младшие 4 бита, соответствующие каналу 1-4, отключение произошло – значение 1 (ВКЛ), нормальная работа – значение 0 (ВЫКЛ).

2. Использование модуля для удаленного ввода/вывода

Модуль расширения ПЛК Haiwell имеет встроенный коммуникационный порт RS485 (некоторые модели с коммуникационным портом Ethernet), который не только поддерживает параллельную шину (используемую для подключения модулей расширения к параллельному интерфейсу ЦПУ ПЛК), но также поддерживает последовательную шину (используется связь между коммуникационным портом RS485 модуля с коммуникационным портом ЦПУ ПЛК, ЦПУ ПЛК при этом управляет модулем с помощью инструкций связи). При использовании последовательной шины для связи с модулями расширения (то есть модулями удаленного ввода/вывода) предела количества модулей расширения нет.

Распределенная установка удаленного ввода/вывода очень важна для системы, которая должна собирать и контролировать большое количество децентрализованных дискретных или аналоговых сигналов (температура, влажность, перепад давления, скорость обдува, поток, скорость вентилятора, сигнал открытия клапана и т. д.). Система при этом достигает распределенного управления и неограниченного количества точек расширения, что значительно повышает гибкость системы управления и возможности дальнейшего расширения системы управления, уменьшает количество управления и возможности дальнейшего расширения системы управления, уменьшает количество управляющих кабелей, а также снижает помехи в слишком длинной аналоговой линии управления.

Ниже представлены ключевые моменты и методы работы.

2.1. Питание модуля

Когда модуль используется в качестве точки удаленного ввода/вывода, есть модели на 24 В постоянного тока и 220 В переменного тока, например, модель S08AI для источника питания постоянного тока 24 В. S08AI2 для источника питания переменного тока 220 В. Если модуль питается нормально, индикатор PWR загорится.

2,2. Коммуникационный порт

- () Все модули аналоговых входов /выходов имеют встроенный порт RS485.
- 2 Ряд модулей имеет дополнительно порт Ethernet (Modbus TCP).
- Порты RS485 и Ethernet можно использовать одновременно, например, RS485 модуля связывается с ПЛК, порт Ethernet может связываться с несколькими ПК верхнего уровня (до 7).

2.3. Протокол связи и параметры по умолчанию

RS485: Поддержка стандартного протокола Modbus RTU/ASCII, позволяет взаимодействовать со сторонним оборудованием, таким, как панели оператора, ПЛК и компьютеры верхнего уровня, поддерживающими протокол Modbus RTU/ASCII. Настройки:

- **Адрес:** диапазон настройки 1 ~ 254; адрес модуля делится на программный адрес и аппаратный адрес, аппаратный адрес имеет наивысший приоритет.
- Программный адрес: Адрес устанавливается с помощью программного обеспечения, диапазон адресов 1 ~ 254;
- Аппаратный адрес: Адрес устанавливается с помощью 4-битного DIP-переключателя модуля, диапазон адресов
- 1 ~ 15. Пример настройки аппаратного адреса (для станций 1 6):

<u>Скорость обмена данными (битрейт)</u>: 2400, 4800, 9600, 19200, 38400, 57600, 115200 (опция);

<u>Формат данных</u>: N, 8, 2 RTU, E, 8, 1 RTU, O, 8, 1 RTU, N, 8, 1 RTU, E, 7, 1 ASCII, O, 7, 1 ASCII, N, 7, 2 ASCII (опция). Параметры по умолчанию для RS485: 19200, N 8 2 RTU, номер станции (Station) 1.

Ethernet +: Поддержка стандартного протокола Modbus TCP, позволяет взаимодействовать со сторонним оборудованием, таким, как панели оператора, ПЛК и компьютеры верхнего уровня, поддерживающими протокол Modbus TCP. Настройки:

Параметры по умолчанию Ethernet:

Маска подсети: 255.255.255.0

Шлюз: 192.168.1.1

IP адрес: 192.168.1.111

2.4. Метод настройки параметров модуля, когда он используется как станция удаленного ввода/вывода

Существует три способа настройки параметров удаленного ввода/вывода:

- (1) Настройка с помощью ПО: tools (инструменты) remote modules (удаленные модули рекомендуется);
- (2) Настройка через аппаратную конфигурацию и инструкции ТО, когда модуль соединен с ЦПУ по внутренней шине;
- Э Настройка с помощью инструкции MODW через интерфейс связи.

2.5. Пример конфигурации параметров: Настройка удаленного модуля с помощью ПО

2.5.1. Аппаратная конфигурация:

- Подключение через коммуникационный порт RS485 (клеммы A+, B- на модуле): Если компьютер имеет последовательный порт, вы можете использовать преобразователь RS232 в RS485 для подключения к модулю; если он имеет один USB-интерфейс, вы можете использовать преобразователь USB в RS485, подключающийся к модулю.
- 2 Через подключение интерфейса связи Ethernet+: вы можете подключить модуль к сетевому порту компьютера напрямую стандартным сетевым кабелем или подключить компьютер и модуль к коммутатору.

2.5.2. Программные шаги:

① Кликните в меню панели инструментов ПО "Remote module":

Кликните 📰 в всплывающем окне, чтобы открыть окно"Online". Параметры модуля по умолчанию 1,19200, N 8 2 RTU, появятся здесь:

● COM □Zi	gBee	⊖ TCP/IP	
Parameters			
PC P	ort: COM12 🗸		Start address: 1 😂
Baud r	ate: 19200 🗸		End address: 1 🗘
Data form	nat: N,8,2 RTU	~	Find
Find standalone			timeout: 200 🗘
Append to list		Overlay the list	
ddress:1 H08T	TC .		Online

Если к линии RS485 подключен только один объект, то отметьте «Stand-alone search (автономный поиск)»; если их несколько, то отключите кнопку "Stand-alone search" и установите начальный адрес и конечный адрес, чтобы можно было найти все объекты, подключенные к линии RS485, и выполнить настройку параметров.

Нажмите "Exit", чтобы выйти, войдите в интерфейс конфигурации, как показано ниже:

📕 Remot	e module					
Offline	ig) 🗱 Start monitor Upload par	ameter Download parameter F	irmw	are upgrade Export Import Default Help		
Address	Module type	Online mode	B	Parameters		^
1	H08TC V2.0	19200,N,8,2	2	Name	Haiwell_	
				Address	1	
			_	IP address	192.168. 1.111	
			-	Subnet mask	0.255.255.255	
			- 2	Baud rate	3 - 19200	
			-	Data format	0 - N,8,2 RTU	
			0	Analog inputs		
			8	AIO		
				Signal type	3 - E thermocouple	
				Use engineering units	True	
				Upper limit	10000	
				Lower limit	-2000	
				Sample times	5 - [64]	
			=	Zero point	0	
	PN: 15091/1158-0213	80005	Ξ	Al1		
Erre	prcode: 0			Signal type	3 - E thermocouple	
	AI- 10000 10000	10000 10000		Use engineering units	True	
	10000 10000	10000 10000		Upper limit	10000	
	[Lower limit	-2000	
				Sample times	5 - [64]	
				Zero point	0	
			Ξ	AI2		
				Signal type	3 - E thermocouple	
				Use engineering units	True	
			2	Upper limit	10000	
				Lower limit	-2000	
				Sample times	5 - [64]	
-				Zero point	0	Y

При необходимости, можно изменить имя модуля, адрес, IP, маску подсети, скорость передачи данных, формат данных и другие параметры связи в области параметров связи.

Parameters		
Name	Haiwell_	
Address	1	
IP address	192.168. 1.111	
Subnet mask	0.255.255.255	
Baud rate	3 - 19200	
Data format	0 - N,8,2 RTU	
Analog inputs	0 - N,8,2 RTU	
AIO	1 - E,8,1 RTU	
Signal type	2-0,8,1 RTU	
Use engineering units	4 - E 7 1 ASCII	
Upper limit	5 - 0,7,1 ASCII	
Lower limit	6 - N,8,1 RTU	

В настройках внешнего аналогового входа можно установить тип сигнала каждого канала, выбрать, использовать ли инженерное значение или нет, верхний и нижний пределы инженерного значения (его можно установить, если вы проверите необходимость использования инженерного значения), частоту дискретизации и коррекцию нуля.

Analog inputs			
AIO			
Signal type	3 - E thermocouple		
Use engineering units	True		
Upper limit	10000		
Lower limit	-2000		
Sample times	5 - [64]		
Zero point	0		
Al1			
Signal type	1 - K thermocouple	•	
Use engineering units	0 - S thermocouple	^	
Upper limit	1 - K thermocouple		
Lower limit	2 - T thermocouple		
Sample times	4 - I thermocouple		
Zero point	5 - B thermocouple		
AI2	6 - N thermocouple		
Signal type	7 - R thermocouple		
Use engineering units	8 - WRe3/25 thermocouple		
Upper limit	19 - WRebizo thermocouple	*	
Lower limit	-2000		

После настройки выберите «Download parameter», чтобы загрузить параметр в модуль.

-	9	盦	*		0.	\$		0
Offline	Start monitor	Upload parameter	Download parameter	Firmware upgrade	Export	Import	Default	Help

Кроме того, с помощью инструмента настройки удаленного модуля можно выполнять следующие операции:

- Онлайн-мониторинг значения канала модуля, кода ошибки.
- Загрузка параметров модуля, обновление прошивки модуля.
- Экспорт конфигурации модуля для сохранения, импорта и восстановления значений по умолчанию.

2.6. Пример удаленного ввода-вывода (RS485): ПЛК считывает 4 значения температуры от модуля H04RC по связи

① Подключение оборудования: ПЛК подключается к порту RS485 модуля с помощью экранированной витой пары,

А+ подключается к А+, В- подключается к В-, если ПЛК подключается к нескольким удаленным модулям ввода/вывода, для подключения необходимо использовать метод типа «гирлянда» (последовательно от устройства к устройству).

- 2 Adpec Modbus: Из приведенной выше таблицы CR параметров 4-канального модуля видно, что входные значения каналов 1 ~ 4 хранятся в 10H ~ 13H модуля H04RC.
- Программа ПЛК: ПЛК верхнего уровня считывает 4-канальные значения температуры от сигнала удаленного модуля ввода/вывода H04RC, 4-канальные датчики температуры для PT100, -2000~8500 показывает -200,0~850,0 °C. В этом примере связь H04RC является параметром по умолчанию: адрес номера станции —

1, скорость передачи — 19200, формат данных — N 8 2 RTU. Программа ПЛК считывает 4-канальные значения температуры следующим образом:

//Network 1 Module slave 1 baud rate 19200,Date format N,8,2, 4 channels modbus address are 10H-13H, read to v0-v3 register

ЦПУ ПЛК считывает 4-канальные значения температуры от модуля H04RC с помощью команды чтения Modbus MODR, начальный адрес — 10H (шестнадцатеричный формат), десятичное значение — 16. Они будут сохранены в V0-3, V0=235, что означает, что фактическая температура от первого канала составляет 23,5 °C, V3=867, что указывает на то, что фактическая температура от четвертого канала составляет 86,7 °C.

2.7. Пример приложения удаленного ввода-вывода (режим Ethernet): ПЛК считывает и записывает входные и выходные значения каждого канала модуля H08RC-е

- (1) Подключение оборудования: Ethernet-порты ПЛК и модуля соединяются экранированным сетевым кабелем, их можно подключать напрямую или через коммутатор.
- 2 Адрес Modbus: Из приведенной выше таблицы параметров CR модуля H08RC-е видно, что входные значения 8-канального модуля термометра сопротивления, данные от входных каналов 1 ~ 8, сохраняются по адресу 10H ~ 17H.
- Программа ПЛК: Программа считывания 8-канальных данных измерений от удаленного модуля Ethernet H08RC-е, если IP-адрес модуля 192.168.1.112, адрес номера станции 1, результаты считывания сохраняются в V10 ~ V17, выглядит следующим образом:

2.8. Введение в функции и методы применения модуля H04DT

Модуль H04DT поддерживает цифровые датчики температуры: DS18B20, RW1820, DS1990 и датчики температуры и влажности SHT1x, SHT7x.

В процессе настройки программы для датчиков DS18B20, RW1820, DS1990 выбирается тип сигнала DS18B20, для датчиков температуры и влажности SHT1x, SHT7x выбирается тип сигнала SHT11 следующим образом:

Signal type	Use engineering units	Lower limit	Upper limit	A/D Data bits	Zero point
0 DS18B20		-550 🗘	1250 😂	11-bit 🗸	0 🗘
1 SHT11		-400 🗘	1238 🗘	11-bit 🛩	0 🗘
2 SHT11		-400 🗘	1238 😂	11-bit 🗸	0 🗘
3 DS18B20	✓	-550 🗘	1250 🗘	11-bit 🗸	0 🗘
DS18B20			de la contra de la c		
SHT11					

Чтение значения влажности: Прежде всего, мы обращаемся к разделу помощи ПО - руководство по оборудованию параметры модуля расширения - таблица параметров модуля измерения температуры (help of programming software – hardware manual - expansion module parameters - digital temperature module parameter) показывает, что значение влажности H04DT сохраняется в регистрах CR14 ~ 17, т.е. это значение влажности канала 1 ~ 4. Когда для канала в качестве источника значения измерения выбран датчик температуры и влажности, можно прочитать значение влажности с помощью инструкции FROM. В данном случае H04DT является первым модулем рядом с ЦПУ ПЛК, поэтому слот = 1. Программа выглядит следующим образом:

Таким образом, можно считывать значение влажности для модуля DT.

2.9. Введение в функции и методы применения модуля H32DT

Модуль H32DT поддерживает датчики типов: DS18B20, RW1820, DS1990.

Параметры модуля: модуль H32DT имеет 2 канала, каждый канал может измерять максимум 16 точек температуры, всего можно измерить 32 точки температуры. Диапазон измеряемых температур: -55 ~ +125 °C, расстояние удаления ≤ 200 м на канал (сопротивление линии 50 Ом).

Ниже приведены основные пункты этого раздела:

- Использование удаленного модуля;
- Подключение датчика;
- 3 Замена вышедшего из строя датчика;
- (4) Замена вышедшего из строя модуля;

Аппаратная конфигурация

Аппаратная конфигурация и источник питания: USB-порт со стороны ПК передает сигнал на RS485 (ПК с последовательным портом также может использовать преобразователь RS232/RS485), затем подключается к коммуникационному порту A+, B- разъема RS485 в модуле H32DT. Модуль H32DT питается от импульсного источника питания 24 В постоянного тока. После того, как модуль включится, кликните в строке меню инструментов - Удаленный модуль – Онлайн (Remote module – Online), после успешного подключения появляется окно:

● COM	ZigBe	e	⊖ TCP/IP		
Parameters					
	PC Port	COM12 ~		Start address:	1 🗘
E	aud rate:	19200 ~		End address:	1 🗘
Dai	ta format:	N,8,2 RTU	~		Find
Find standalone				timeout:	200 🗘 n
Append to list			Overlay the list		a
Address:1	H32DT				Online
					- S

Нажмите «Exit» или «×», чтобы выйти. При отсутствии датчиков параметры модуля по умолчанию показаны ниже:

Offline	G Start mo	nitor U	pload par	rameter	Download param	eter Firr	mware upgrade Export Import Default I	ဖို့ Help	
Address	Module type Online mode		_	Parameters	HOODT				
8 1	19200,10,8,2			Addagaa	H32D1				
						_	Address	0.0.0	
							IP address	0. 0. 0. 0	
						_	Subnet mask	0.255.255.255	
							Baudrate	3 - 19200	
							Data format	0 - N,8,2 RTU	
							AVD Data bits	2-110lt	
							Sensor configuration number	/	
							No:1 Sensor senal number	3904 16A0 A719 FF28	
							No:2 Sensor serial number	4705 16A0 AF6E FF28	
						No:3 Sensor serial number	F105 16A0 C81F FF28		
							No:4 Sensor serial number	2805 16A0 C7B4 FF28	
	-		170 0445	40000			No:5 Sensor serial number	0504 16A0 8EB4 FF28	
_	PN:	100118	1/3-0115	10020			No:6 Sensor serial number	BB05 16A0 C301 FF28	
Erro	or code:	0					No:7 Sensor serial number	EA04 16A0 C1E4 FF28	
Cha	annel 1:	0	0	0	0		No:8 Sensor serial number		
one	line i	0	0	0	0		No:9 Sensor serial number		
	ĥ	0	0	0	0		No:10 Sensor serial number		
	Ì	0	0	0	0		No:11 Sensor serial number		
100000		*					No:12 Sensor serial number		
Cha	annel 2:	0	0	0	0		No:13 Sensor serial number		
	Ļ	0	0	0	0		No:14 Sensor serial number		
	Ļ	0	0	0	0		No:15 Sensor serial number		
		0	0	0	0		No:16 Sensor serial number		
							Channel 2		
							A/D Data bits	2 -11bit	
							Sensor configuration number	16	

Затем начинается получения доступа к датчикам (для правильного подключения обратитесь к приведенной выше схеме подключения цифрового модуля), как показано на рисунке ниже, получаем доступ к датчику № 1:

Нажмите «Monitor», чтобы увидеть #1 значение температуры датчика канала 1, выйдите из «Monitor», кликните «parameter upload (загрузить параметр)», вы можете просмотреть серийные номера датчиков. Считайте #1 значение температуры датчика и серийный номер, как показано ниже:

- (1) Число 251 означает, что текущая температура составляет 25,1 °С;
- (2) №: 1 серийный номер датчика: 3904 16А0 А719 FF28, то есть #1 серийный номер датчика;
- ③ Числовое значение 1250 указывает, что максимальное значение инженерной величины, отображаемое каналом (-55 ~ + 125 °C, то есть -550 ~ 1250), когда датчик не подключен.

ress	Module type		Online mod	le	Parameters		
	H32DT V1.2		19200,N,8,	2	Name	H32DT	
					Address	1	
					IP address	0. 0. 0. 0	
					Subnet mask	0.255.255.255	
					Baud rate	3 - 19200	
					Data format	0 - N,8,2 RTU	
					Channel 1		
					A/D Data bits	2 -11bit	
			(1)	(2	Sensor configuration number	7	
			10	7	No:1 Sensor serial number	3904 16A0 A719 FF28	
					No:2 Sensor serial number	4705 16A0 AF6E FF28	
					No:3 Sensor serial number	F105 16A0 C81F FF28	
					No:4 Sensor serial number	2805 16A0 C7B4 FF28	
					No:5 Sensor serial number	0504 16A0 8EB4 FF28	
	PN: 1601	18 173-0115	510020		No:6 Sensor serial number	BB05 16A0 C301 FF28	
Error	code: 0				No:7 Sensor serial number	EA04 16A0 C1E4 FF28	
Chan	251	1250	252 2	50	No:8 Sensor serial number		
Gilan	25	251	252 2	50	No:9 Sensor serial number	12	
	125	0 1250	1250 12	50	No:10 Sensor serial number		
	125	0 1250	1250 12	150	No:11 Sensor serial number		
	120	1250	1200 12		No:12 Sensor serial number		
Chan	nel 2: 267	272	272 2	75	No:13 Sensor serial number		
	272	275	265 2	72	No:14 Sensor serial number		
	275	272	275 2	70	No:15 Sensor serial number		
	275	1250	271 2	73	No:16 Sensor serial number		
					Channel 2		
					A/D Data bits	2 -11bit	
					Sensor configuration number	16	

Затем получаем доступ ко второму датчику (для правильного подключения обратитесь к приведенной выше схеме подключения цифрового модуля), при этом, время интервала доступа к соседним датчикам должно быть больше 10 секунд. Схема подключения выглядит следующим образом:

Считанные значения температур и серийные номера (для Канала 1):

Channel 1:	248	253	253	247
	254	250	255	1250
	1250	1250	1250	1250
	1250	1250	1250	1250

Channel 1	
A/D Data bits	2 -11bit
Sensor configuration number	7
No:1 Sensor serial number	3904 16A0 A719 FF28
No:2 Sensor serial number	4705 16A0 AF6E FF28
	Channel 1 A/D Data bits Sensor configuration number No:1 Sensor serial number No:2 Sensor serial number

Далее по порядку, слева направо продолжаем устанавливать датчики (интервал доступа к соседним датчикам нужен более 10 секунд), до 16-го датчика, фиксируя температуру каждого канала и серийный номер.

После доступа к 16 датчикам канала 1 доступ к каналу 2 осуществляется таким же образом, при доступе к датчикам мы следуем по пути от ближнего к дальнему или от дальнего к ближнему. После завершения доступа ко всем датчикам необходимо сохранить параметры конфигурации модуля H32DT, этот шаг очень важен! Конкретная операция выглядит следующим образом: в строке меню инструмента удаленного модуля есть функция экспорта, мы нажимаем «Экспорт (Export)»:

После экспортирования кликните «Сохранить (Save):

Операция завершена, модуль подключен, параметры сохранены. Следующим этапом ЦПУ ПЛК должен считать температуру с модуля.

H32DT может связываться с ЦПУ ПЛК через параллельный порт, а также через порт RS485, H32DT используется в качестве модуля удаленного ввода-вывода.

В разделе справки ПО ПЛК - Руководство по оборудованию - Параметры модуля расширения - Таблица параметров цифрового модуля температуры и влажности (Hardware Manual - Expansion Module Parameters - Digital Temperature And Humidity Module Parameter Table) или в «8.1 Таблица параметров цифрового модуля температуры и влажности», значения температуры каналов 1 и 2 в регистрах СК модуля.

Канал 1: 10H ~ 1FH; Канал 2: 20H ~ 2FH.

Когда модуль обменивается данными с ЦПУ ПЛК через параллельный порт, аппаратная конфигурация выглядит следующим образом:

Index	Module type	X Component	Y Component	Al Component	AQ Component	Other
0 🖸	T16S2T/P(-e)	X0 - X7	Y0 - Y7			COM1-2 HSC0-1 PLS0-1
1	H04DT			AI0 - AI3		
2	H32DT					
c 👘						
-H32	DT					
	Help					
	-pp/	• DT1 DT1				

Далее, для считывания значения температуры модуля можно использовать инструкцию FROM, поскольку модуль находится во второй позиции аппаратной конфигурации, в инструкции FROM мы устанавливаем слот = 2, шестнадцатеричное значение 10Н (десятичное значение 16), программа выглядит следующим образом:

Когда модуль используется для удаленного ввода/вывода, он подключается к ЦПУ ПЛК через контакты А+ и Впоследовательного порта RS485. Скорость передачи данных модулем по умолчанию составляет 19200 бит/с, формат данных - N 8 2 RTU, номер станции по умолчанию равен 1 и поддерживается протокол Modbus. Программа обмена данными выглядит следующим образом:

//Network 6 H32DT Slave1, rate 19200, Date format N,8,2, RTU, thirty-two temperature storage in 10H-2FH, read to V300-331 register

Выше описаны методы использования H32DT при нормальной работе. Далее будет описаны способы решения распространенных проблем и проблем на месте при эксплуатации модуля H32DT.

FAQ по модулю H32DT

① Если несколько датчиков будут подключены до включения модуля H32DT, что произойдет, когда модуль H32DT будет включен?

А: Если несколько датчиков подключены до включения модуля H32DT, после включения модуля H32DT, он автоматически выполнит поиск всех датчиков и случайным образом запишет их в регистры (CR10H ~ 2FH), то есть, порядок будет нарушен. Из этого следует, что последовательность операций очень важна. Сначала подайте питание на модуль, а затем оформите доступ по порядку от ближнего к дальнему или от дальнего к ближнему датчикам.

(2) Если в процессе использования один из датчиков температуры вышел из строя, как заменить датчик в процессе работы?

A: Модуль выключать не нужно, отсоедините вышедший из строя датчик, подключите новый, модуль H32DT автоматически идентифицирует и определит его. Температура, считанная новым датчиком, автоматически заменит показания снятого датчика, не влияя на получение температуры другими работающими нормально датчиками.

③ Если в процессе использования вышли из строя несколько датчиков температуры, как заменить эти датчики в процессе работы?

А: Просто удалите эти поврежденные датчики и замените их новыми по порядку.

Необходимо соблюдать последовательность доступа к датчикам от ближнего к дальнему или от дальнего к ближнему. Например, установлено 16 датчиков канала 1, доступ к ним происходит от ближнего к дальнему по порядку, при работе выходят из строя датчики #2, #7 и #13. В этот момент модуль не выключать нужно, отсоедините датчики #2, #7 и #13, подключите новые в соответствии с последовательностью, сначала устанавливается доступ к датчику #2, затем #7 и, наконец, к датчику #13. Таким образом, модуль H32DT автоматически идентифицирует и определяет значения температуры, считываемые новыми датчиками, автоматически заменяя вышедший из строя датчик, не влияя на получение температуры другими работающими нормально датчиками.

Аналогично, если доступ к датчикам по схеме издалека в ближний, то при их замене также из далека в ближний.

④ Если в процессе работы выходит из строя сам модуль H32DT, что делать, чтобы убедиться, что датчики, настроенные с ним, работоспособны?

A: Метод сохранения параметров модуля был представлен в предыдущем Разделе. Вы можете перенести параметры конфигурации модуля H32DT.

Если модуль H32DT вышел из строя, нужно только импортировать ранее сохраненные параметры модуля в новый модуль H32DT с помощью инструмента удаленного модуля, импортировать предыдущую таблицу конфигурации и, наконец, нажать «Загрузить параметры (download parameter)», чтобы загрузить параметры в модуль.

-	9	甗	*		0.	4	123	0
Offline	Start monitor	Upload parameter	Download parameter	Firmware upgrade	Export	Import	Default	Help

Значение температуры каждой позиции и последовательность датчиков модуля будут соответствовать предыдущему модулю. Это очень удобно для решения проблем с заменой модулей.

(5) 4-й пункт указывает на важность таблицы параметров модуля H32DT, значит ли это, что мы должны повторно сохранять таблицу параметров каждый раз после замены модуля?

А: Да. После замены модуля обязательно каждый раз сохраняйте копию.

(6) Как очистить конфигурацию параметров модуля H32DT в процессе работы?

А: Существует два способа: очистка с помощью ПО и аппаратная очистка. Описание см. ниже:

<u>Программная очистка конфигурации параметров:</u> кликните значение по умолчанию в канале без доступа к какому-либо датчику, затем кликните загрузку параметра, чтобы очистить конфигурацию (серийные номера датчиков).

<u>Аппаратная очистка конфигурации параметров:</u> очистка конфигурации (серийные номера датчиков) может быть выполнена путем выключения и включения модуля три раза без доступа к какому-либо датчику в канале. Конфигурацию времени отключения канала можно просмотреть в CRC6H и CRC7H.

⑦ Индикатор состояния канала H32DT на модуле имеет значения 0 и 1 (включен или выключен), что означают постоянные включения/отключения и мигание?

А: Состояние 0 и 1 – канал работает нормально, мигание – датчик отключен.

(8) Для модуля H32DT, как подать тревожный сигнал обрыва связи датчика канала?

А: Таблица параметров модуля цифровых датчиков измерения температуры показывает, что регистры аварийного сигнала обрыва связи модуля H32DT — это CR32H (канал 1) и CR33H (канал 2). Таким образом, при расширении системы через параллельный порт мы можем написать программу как показано ниже.

В этом примере модуль находится на второй позиции аппаратной конфигурации, поэтому в инструкции FROM мы устанавливаем Slot = 2, шестнадцатеричное значение 32H, то есть десятичное значение 50, V30-V31 в программе соответственно указывают на регистр сигнализации обрыва связи канала 1 и на регистр сигнализации обрыва связи канала 2. аварийный. С помощью WTOB мы видим, что M100 ~ 115 — это биты состояния аварийной сигнализации, соответствующие 16 датчикам канала 1. M116 ~ 131 — это биты состояния аварийной сигнализации, соответствующие 2, поэтому программа выглядит следующим образом:

//Network 7 V30 register is channel 1 offline alarm, V31 register is channel 2 offline alarm.By WTOB, can get M100-115 are channel 1 sixteen sensors' offline alarm status bit. M116-131 are channel 2 sixteen sensors' offline alarm status bit.

Когда модуль используется для удаленного ввода/вывода, модуль и ЦПУ ПЛК соединяются через последовательный порт RS485 A+ B-. Скорость обмена данными по умолчанию 19200 бит/с, формат данных N 8 2 RTU, номер станции по умолчанию 1, поддержка протокола Modbus. Отключенные аварийные сигналы каналов CR32~33 считываются обратно в V32~V33. С помощью инструкции WTOB определяем, что биты M300~315 показывают состояния отключения тревоги, соответствующие 16 датчикам в канале 1. M316~331 – это биты, показывающие состояния отключения тревоги, соответствующие 16 датчикам в канале 2, программа связи выглядит следующим образом:

(9) Какова роль настройки количества датчиков?

A: Если количество датчиков в канале H32DT меньше, чем количество настроенных датчиков, то соответствующий индикатор состояния канала будет мигать. Когда фактическое количество датчиков больше или равно числу в конфигурации, аварийный сигнал не выдается.

10 Что означает числовое значение 850 при мониторинге?

А: См. Руководство по датчику DS18B20, проверьте крепление провода заземления 850-битной микросхемы, проверьте подключение датчика.