ул. Магнитогорская 1Г, к. 20

Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48

e-mail: zakaz@itrostov.ru

www. itrostov. ru

ТРМ101 ПИД-регулятор с универсальным входом в корпусе 48х48 мм.

ПИД-регулятор температуры, давления или других физических величин в различных технологических процессах ОВЕН ТРМ101 предназначен для точного поддержания заданных параметров. Используется в составе сложного технологического оборудования: экструдеров, термопластавтоматов, печей, упаковочного, полиграфического, вакуум-формовочного оборудования и т. п. Класс точности регулятора 0,5.

ПИД-регулятор температуры, давления и др. выпускается в щитовом корпусе типа Щ5, степень защиты IP54 со стороны передней панели.

Функциональные возможности ПИД-регулятора ОВЕН ТРМ101:

- Универсальный вход для подключения широкого спектра датчиков температуры, давления, влажности и др.
- ПИД-регулирование измеренной величины с использованием «нагревателя» или «холодильника»
- Автонастройка ПИД-регулятора по современному эффективному алгоритму
- Дистанционный пуск и остановка ПИД-регулятора с помощью внешнего устройства, подключенного к дополнительному входу 2
- Сигнализация о возникновении аварийной ситуации двух типов:
 - о выходе регулируемой величины за заданные пределы
 - о об обрыве в цепи регулирования (LBA)
- Регулирование мощности (например, для управления инфракрасной лампой) совместно с прибором ОВЕН БУСТ при использовании токового выхода 4...20 мА
- Бесконтактное управление нагрузкой через внешнее твердотельное реле
- Встроенный интерфейс RS-485 (протокол OBEH)
- Конфигурирование ПИД-регулятора температуры, давления и др. величин осуществляется на ПК или с передней панели прибора
- Уровни защиты параметров для разных групп специалистов
- Два выхода в любых комбинациях: электромагнитное реле, оптосимистор, оптотранзистор, «токовая петля» 4...20 мА, унифицированное напряжение 0..10 В, специализированный выход для подключения твердотельного реле

Функциональную схему регулятора можно посмотреть здесь, возможные схемы подключения регулятора здесь. В комплект поставки пид-регулятора бесплатно входит: OPC-сервер, драйвер для работы со SCADA-системой TRACE MODE; библиотеки WIN DLL

Технические характеристики:

Питание

Напряжение питания 90245 В частотой 4763 Гц	
Универсальный вход 1	
Предел допустимой основной погрешности измерения входного ±0,5 %	
параметра	
Входное сопротивление при подключении источника сигнала:	
– тока	100 Ом ± 0,1 %
– напряжения	не менее 100 кОм
Дополнительный вход 2	
Сопротивление внешнего ключа:	
– в состоянии «замкнуто»	01 кОм
– в состоянии «разомкнуто»	более 100 кОм
Выходы	
Количество выходных устройств	2
Интерфейс связи	
Тип интерфейса	RS-485
Скорость передачи данных	2.4; 4.8; 9.6; 14.4; 19.6; 28.8; 38.4; 57.6; 115.2
	кбит/с

ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ

ул. Магнитогорская 1Г, к. 20

Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48

e-mail: zakaz@itrostov.ru

www. itrostov. ru

К	o	p	П	٧	C

Тип корпуса и его габаритные размеры (без элементов щитовой Щ5, 48×48×102 мм	
крепления)	
Степень защиты корпуса	IP54 (со стороны передней панели)

Характеристики выходных устройств

Обозначение	Тип выходного устройства (ВУ)	Электрические характеристики
P	электромагнитное реле	1 А (ПИД-регулирование) 8 А (сигнализация) при 220 В 5060 Гц, cos > 0,4 или 30 В пост. тока
К	транзисторная оптопара структуры n–p–n типа	200 мА при 50 В пост. тока
С	симисторная оптопара	50 мА при 240 В (пост. откр. симистор) или 0,5 А (симистор вкл. с частотой не более 50 Гц и tимп. = 5 мс)
И	цифроаналоговый преобразователь «параметр-ток 420 мА»	нагрузка 01000 Ом, напряжение питания 1030 В пост. тока
У	цифроаналоговый преобразователь «параметр— напряжение 010 В»	нагрузка не менее 2 кОм, напряжение питания 1532 В
Т	выход для управления твердотельным реле	выходное напряжение 46 В максимальный выходной ток 50 мА

Характеристики измерительных датчиков

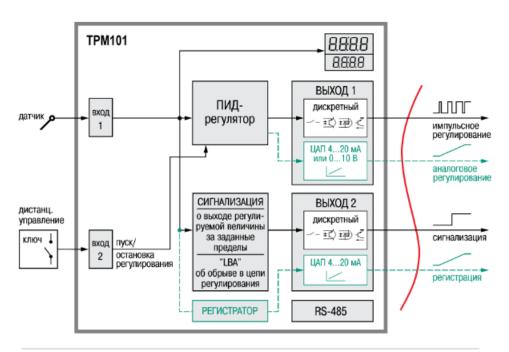
Код in-t	Тип датчика	Диапазон измерений
r385	TCΠ50 W100 = 1.385	–200+750 °C
r.385	TCΠ100 W100 = 1.385 (Pt 100)	–200+750 °C
r391	TCΠ50 W100 = 1.391	–200+750 °C
r.391	TCΠ100 W100 = 1.391	–200+750 °C
r-21	ТСП гр. 21 (R0=46 Ом, W100 = 1.391)	–200+750 °C
r426	TCM50 W100 = 1.426	−50+200 °C
r.426	TCM100 W100 = 1.426	−50+200 °C
r-23	TCM гр. 23 (R0=53 Ом, W100 = 1.426)	−50+200 °C
r428	TCM50 W100 = 1.428	−190+200 °C
r.428	TCM100 W100 = 1.428	−190+200 °C
E_A1	термопара ТВР (А-1)	0+2500 °C
E_A2	термопара ТВР (А-2)	0+1800 °C
E_A3	термопара ТВР (А-3)	0+1800 °C
Eb	термопара ТПР (В)	+200+1800 °C
EJ	термопара ТЖК (J)	–200+1200 °C
EK	термопара ТХА (К)	–200+1300 °C
EL	термопара ТХК (L)	–200+800 °C
En	термопара ТНН (N)	–200+1300 °C
Er	термопара ТПП (R)	0+1750 °C
ES	термопара ТПП (S)	0+1750 °C
Et	термопара ТМК (Т)	–200+400 °C
i 0_5	ток 05 мА	0100 %
i 0.20	ток 020 мА	0100 %
i 4.20	ток 420 мА	0100 %
U-50	напряжение –50+50 мВ	0100 %
U0_1	напряжение 01 В	0100 %

Условия эксплуатации

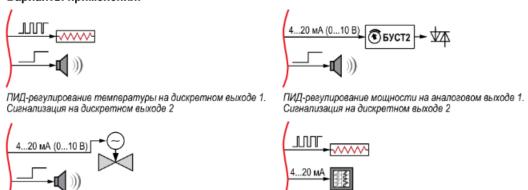
Температура воздуха, окружающего корпус прибора	+1+50 °C	
Атмосферное давление	86106,7 кПа	

ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ

ул. Магнитогорская 1Г, к. 20


Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48

e-mail: zakaz@itrostov.ru


www. itrostov. ru

Относительная влажность воздуха (при 35 °C) 30...85 %

Функциональная схема прибора:

Варианты применения:

ПИД-регулирование на аналоговом выходе 1 с помощью задвижки с аналоговым управлением. Сигнализация на дискретном выходе 2 ПИД-регулирование температуры на дискретном выходе 1. Регистрация измерений на аналоговом выходе 2

Универсальный измерительный вход

Терморегулятор OBEH TPM101 имеет один универсальный вход (вход 1) для подключения датчиков следующих типов:

- термопреобразователей сопротивления ТСМ 50М/100М, ТСП 50П/100П, ТСМ гр.23, ТСП гр.21, Pt100;
- термопар ТХК(L), ТХА(K), ТНН(N), ТЖК(J), ТПП(S), ТПП(R), ТПР(В), ТМК(Т), ТВР (А-1, А-2, А-3);
- датчиков с унифицированным сигналом тока 0...5 мА, 0(4)...20 мА и напряжения 0...1 В, –50...+50 мВ.

Дополнительный вход для дистанционного управления

К дополнительному входу (вход 2) ТРМ101 можно подключить внешний ключ для дистанционного пуска/остановки регулирования.

Цифровая фильтрация и коррекция входного сигнала

ОВЕН ТРМ101 осуществляет цифровую фильтрацию входного сигнала от помех и коррекцию измерительной характеристики датчика ("сдвиг", "наклон").

Для датчиков с унифицированным выходным сигналом тока или напряжения осуществляется масштабирование шкалы.

НЖЕНЕРНЫЕ ТЕХНОЛОГИИ

ул. Магнитогорская 1Г, к. 20

Т.моб.: +7-903-401-25-48

Т.к. (863) 221-25-48

www. itrostov. ru

ПИД-регулятор

Прибор ОВЕН ТРМ101 осуществляет ПИД-регулирование измеренной величины, управляя "нагревателем" или "холодильником". Настройка коэффициентов ПИД-регулятора на объекте осуществляется автоматически (автонастройка).

Терморегулятор ОВЕН ТРМ101 управляет нагрузкой одним из двух методов:

- импульсным (если выход ПИД-регулятора э/м реле, транзисторная оптопара, симисторная оптопара, выход для управления внешним твердотельным реле);
- аналоговым (если выход ПИД-регулятора ЦАП 4...20 мА или 0...10 В).

Аварийная сигнализация о выходе регулируемой величины за заданные пределы

Терморегулятор ОВЕН ТРМ101 контролирует нахождение регулируемой величины в заданных пределах. Прибор выдает аварийный сигнал в одном из следующих случаев, когда значение измеренной величины:

- 1. выходит за заданный диапазон;
- 2. превышает уставку регулятора на заданную величину;
- 3. меньше уставки регулятора на заданную величину;
- 4. находится в заданном диапазоне;
- 5. аналог. п. 1 с блокировкой 1-го срабатывания;
- 6. аналог. п. 2 с блокировкой 1-го срабатывания;
- 7. аналог. п. 3 с блокировкой 1-го срабатывания;
- 8. превышает заданную величину по абсолютному значению;
- 9. меньше заданной величины по абсолютному значению;
- 10. аналог. п. 8 с блокировкой 1-го срабатывания;
- 11. аналог. п. 9 с блокировкой 1-го срабатывания.

Тип аварийной сигнализации задается пользователем.

Сигнализация об обрыве контура регулирования (LBA)

Эта функция позволяет определить аварию в контуре регулирования. Прибор контролирует скорость регулируемой величины и выдает сигнал, если при подаче максимального управляющего воздействия измеряемое значение регулируемой величины не меняется в течение определенного времени.

Выходные устройства прибора ТРМ101

В приборе устанавливаются два выходных устройства (ВУ).

Выходное устройство ПИД-регулятора (ВУ1) может быть следующих типов:

- э/м реле;
- транзисторная оптопара;
- симисторная оптопара;
- выход для управления внешним твердотельным реле;
- цифроаналоговый преобразователь "параметр ток 4...20 мА";
- цифроаналоговый преобразователь "параметр напряжение 0...10 В".

ВУ2 может быть:

- ключевым (э/м реле, транзисторная оптопара, симисторная оптопара, выход для управления внешним твердотельным реле) для подключения внешнего устройства сигнализации или блокировки оборудования;
- аналоговым (ЦАП 4...20 мА) для подключения регистрирующего устройства.

Интерфейс RS-485

В ТРМ101 установлен модуль интерфейса RS-485, организованный по стандартному протоколу ОВЕН. Интерфейс RS-485 позволяет:

- конфигурировать прибор на ПК (программа-конфигуратор предоставляется бесплатно);
- передавать в сеть текущие значения измеренной величины и выходной мощности регулятора, а также любых программируемых параметров.

Подключение ТРМ101 к ПК производится через адаптер ОВЕН АС3-М или АС4.

При интеграции ТРМ101 в АСУ ТП в качестве программного обеспечения можно использовать SCADA-систему Owen Process Manager или какую-либо другую программу.

Компания ОВЕН бесплатно предоставляет для ТРМ101:

- драйвер для Trace Mode:
- OPC-сервер для подключения прибора к любой SCADA-системе или другой программе, поддерживающей ОРС-технологию;
- библиотеки WIN DLL для быстрого написания драйверов.

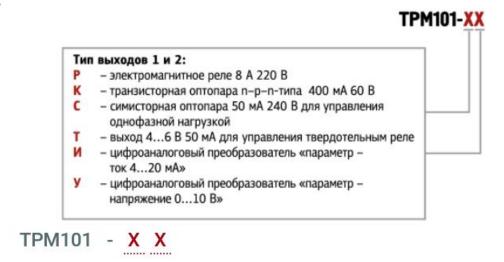
e-mail: zakaz@itrostov.ru

ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ

ул. Магнитогорская 1Г, к. 20

Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48

e-mail: zakaz@itrostov.ru


www. itrostov. ru

Современный эффективный алгоритм АВТОНАСТРОЙКИ ПИД-регулятора: разработан компанией ОВЕН совместно с ведущими российскими учеными

При автонастройке прибор вычисляет оптимальные для данного объекта значения коэффициентов ПИД-регулирования, а также постоянную времени цифрового фильтра и период следования управляющих импульсов.

Модификации:

Элементы управления:

Верхний цифровой индикатор красного цвета в режиме РАБОТА отображает текущее значение измеряемой величины, при программировании – название параметра.

Нижний цифровой индикатор зеленого цвета отображает значение параметра при программировании.

Функции кнопок при программировании

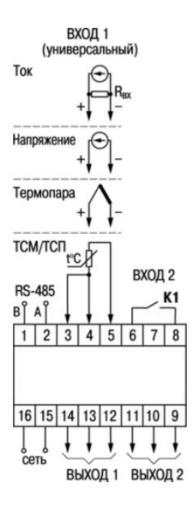
- jj	ppo.papo=a
для входа в МЕНЮ параметров, далее – в нужную группу параметров и для циклического пролистывания параметров в группе (при этом значение текущего	
	параметра при каждом нажатии кнопки записывается в память).
\gg	служат для перехода между пунктами МЕНЮ параметров;
☆	увеличивает значение параметра
¥	уменьшает значение параметра
прог. < 😸	Одновременное нажатие кнопок - доступ к набору кода для входа в группу защищенных параметров

ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ

ул. Магнитогорская 1Г, к. 20

Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48

e-mail: zakaz@itrostov.ru


www. itrostov. ru

Светодиоды показывают состояние, в котором находится прибор

«СТОП»	регулятор остановлен
«AH»	идет автонастройка
«РУЧ»	прибор находится в режиме ручного управления
«RS»	прибор осуществляет обмен данными с сетью RS 485
«K1»	включено ВУ1
«K2»	включено ВУ2
«AL»	регулируемая величина выходит за заданные пределы;
«LBA»	обнаружен обрыв в цепи регулирования.

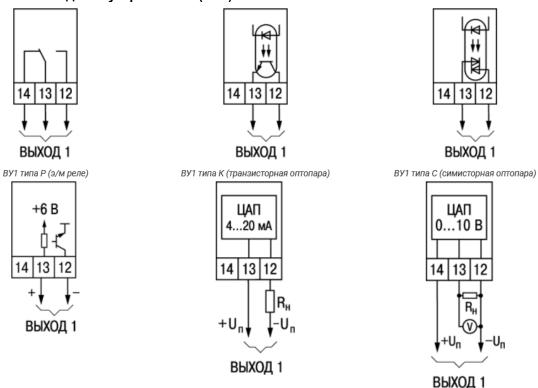
Схемы подключения:

Общая схема подключения ТРМ101

НЖЕНЕРНЫЕ

ул. Магнитогорская 1Г, к. 20

Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48

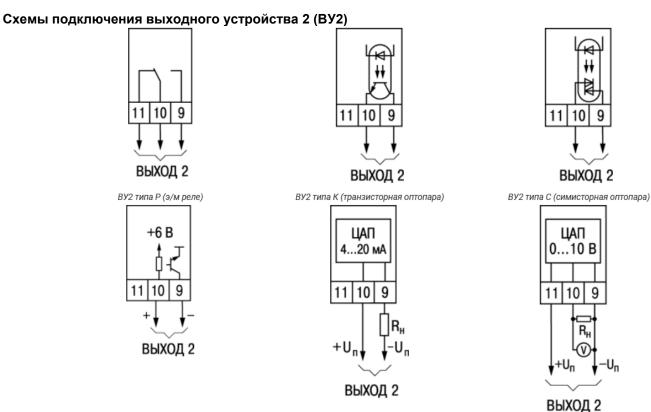

e-mail: zakaz@itrostov.ru

ВУ1 типа У (ЦАП 0...10 В)

ВУ2 типа У (ЦАП 0...10 В)

www. itrostov. ru

Схемы подключения выходного устройства 1 (ВУ1)



ВУ1 типа Т (для управления твердотельным реле)

ВУ2 типа Т (для управления твердотельным

реле)

ВУ1 типа И (ЦАП 4...20 мА)

ВУ2 типа И (ЦАП 4...20 мА)