ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ

ул. Магнитогорская 1Г, к. 20

Т.моб.: +7-903-401-25-48

Т.к. (863) 221-25-48

e-mail: zakaz@itrostov.ru

www. itrostov. ru

ТРМ202 Двухканальный регулятор с универсальным входом и RS-485.

• в настенном корпусе Н2

• в корпусе Н

• в корпусе Щ1

• в корпусе Щ2

Терморегулятор OBEH TPM202 – аналог OBEH 2TPM1 с интерфейсом RS -485.

Применяется для измерения, регистрации или регулирования температуры теплоносителей и различных сред в холодильной технике, сушильных шкафах, печах различного назначения, пастеризаторах и другом технологическом оборудовании, а также для измерения других физических параметров (веса, давления, влажности и т. п.).

Прибор выпускается в 4-х типах корпусов: настенном Н, щитовых Щ1, Щ2 и новом эргономичном корпусе Н2

Функциональные возможности измерителя-регулятора ТРМ202:

- Два универсальных входа для подключения широкого спектра датчиков температуры, давления, влажности и др. Можно подключать два датчика разного типа
- Два независимых канала регулирования измеряемых величин по двухпозиционному закону или аналоговому П-закону
- Регулирование и одновременная регистрация измеряемой величины при установке ЦАП 4...20 мА в качестве второго выходного устройства
- Одноканальное трехпозиционное регулирование (с двумя разными уставками)
- Вычисление и регулирование разности измеряемых величин
- Вычисление и индикация квадратного корня из измеряемой величины (например, для регулирования мгновенного расхода)
- Встроенный интерфейс RS -485 (протокол OBEH, Modbus ASCII/RTU)
- Конфигурирование на ПК или с лицевой панели прибора
- Быстрый доступ к изменению уставок с лицевой панели прибора
- Уровни защиты настроек прибора для разных групп специалистов

Технические характеристики:

Питание

Напряжение питания	90245 В переменного тока
Частота напряжения питания	4763 Гц

Универсальные входы

Количество универсальных входов	2
Типы входных датчиков и сигналов	см. таблицу «Характеристики измерительных
	датчиков»
Время опроса входа	1 c
Входное сопротивление при подключении источник	а сигнала:
– тока	100 Ом ± 0,1 % (при подключении внешнего резистора)
– напряжения	не менее 100 кОм
Предел допустимой основной погрешности:	
– для термометров сопротивления	±0,25 %
– для остальных видов сигналов	±0,5 %

Выходы

Выходы	
Количество выходных устройств	2

ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ

ул. Магнитогорская 1Г, к. 20

Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48

e-mail: zakaz@itrostov.ru

www. itrostov. ru

Интерфейс связи

Тип интерфейса	RS-485
Скорость передачи данных	2.4; 4.8; 9.6; 14.4; 19.6; 28.8; 38.4; 57.6; 115.2 кбит/с
Тип кабеля	экранированная витая пара
Протокол передачи данных	OBEH, Modbus RTU, Modbus ASCII

Корпус

Габаритные размеры и степень защиты корпуса	
Щитовой Щ1	96×96×70 мм, IP54*
Щитовой Щ2	96×48×100 мм, IP54*
Настенный Н	130×105×65 мм, IP44
Настенный Н2	150×105×35 мм, IP20
* со стороны передней панели	

Характеристики выходных устройств

Обозначение	Тип выходного устройства (ВУ)	Электрические характеристики
Р	электромагнитное реле	8 A при 220 B, cos φ > 0,4
К	транзисторная оптопара структуры n-p-n типа	400 мА при 60 В пост. тока
С	симисторная оптопара	50 мА при 240 В (пост. откр. симистор) или 0,5 А (симистор вкл. с частотой не более 50 Гц и tимп. = 5 мс)
И	цифроаналоговый преобразователь «параметр–ток 420 мА»	нагрузка 01000 Ом, напряжение питания 1030 В пост. тока
У	цифроаналоговый преобразователь «параметр–напряжение 010 В»	нагрузка не менее 2 кОм, напряжение питания 1532 В
Т	выход для управления твердотельным реле	выходное напряжение 46 В, макс. выходной ток 50 мА

Характеристики измерительных датчиков

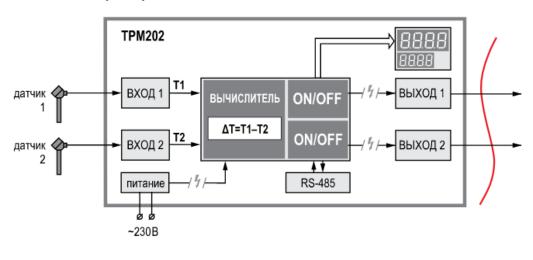
Код in.t	Тип датчика	Диапазон измерений
r385	TCΠ50 W100 = 1.385	−200+750 °C
r.385	TCΠ100 W100 = 1.385 (Pt 100)	−200+750 °C
r391	TCΠ50 W100 = 1.391	–200+750 °C
r.391	TCΠ100 W100 = 1.391	−200+750 °C
r-21	ТСП гр. 21 (R0=46 Ом, W100 = 1.391)	−200+750 °C
r426	TCM50 W100 = 1.426	−50+200 °C
r.426	TCM100 W100 = 1.426	−50+200 °C
r-23	TCM гр. 23 (R0=53 Ом, W100 = 1.426)	−50+200 °C
r428	TCM50 W100 = 1.428	−190+200 °C
r.428	TCM100 W100 = 1.428	−190+200 °C
E_A1	термопара ТВР (А-1)	0+2500 °C
E_A2	термопара ТВР (А-2)	0+1800 °C
E_A3	термопара ТВР (А-3)	0+1800 °C
Eb	термопара ТПР (В)	+200+1800 °C
EJ	термопара ТЖК (J)	–200+1200 °C
EK	термопара ТХА (K)	–200+1300 °C
EL	термопара ТХК (L)	–200+800 °C
En	термопара ТНН (N)	–200+1300 °C
Er	термопара ТПП (R)	0+1750 °C
ES	термопара ТПП (S)	0+1750 °C
Et	термопара ТМК (Т)	–200+400 °C
i 0_5	ток 05 мА	0100 %
i 0.20	ток 020 мА	0100 %
i 4.20	ток 420 мА	0100 %
U-50	напряжение –50+50 мВ	0100 %
U0_1	напряжение 01 В	0100 %

Условия эксплуатации

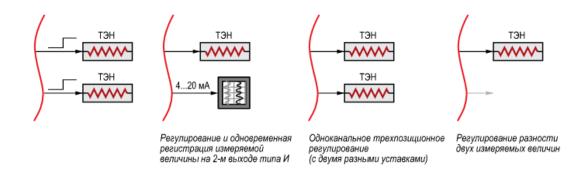
Температура окружающего воздуха +1	·1+50 °C
------------------------------------	----------

Инженерные технологии

ул. Магнитогорская 1Г, к. 20


Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48

e-mail: zakaz@itrostov.ru


www. itrostov. ru

Атмосферное давление	86106,7 кПа
Относительная влажность воздуха (при +35 °C)	3080 %

Функциональная схема прибора:

Варианты применения:

ЛУ – логическое устройство

ВУ – выходное устройство

Универсальные входы прибора ТРМ202:

Терморегулятор ТРМ202 имеет два универсальных входа для подключения измерительных датчиков:

- термопреобразователей сопротивления типа TCM или TCП 50/100, Pt100;
- термопар ТХК, ТХА, ТНН, ТЖК, ТПП(S), ТПП(R), ТВР(А-1, 2, 3), ТПР(В), ТМК(Т);
- активных датчиков с унифицированным сигналом тока 0...5 мА, 0(4)...20 мА или напряжения -50...+50 мВ, 0...1 В.

Вычисление дополнительных функций от входных величин:

В ОВЕН TPM202 имеется вычислитель квадратного корня из значения входного сигнала. Используется с датчиками, имеющими квадратичную выходную характеристику (при измерении мгновенного расхода жидкости или газа).

Вычислитель разности вычисляет разность значений с 1-го и 2-го входов, которая по выбору пользователя может поступать на ЛУ1 или ЛУ2.

Логические устройства ОВЕН ТРМ202 (ЛУ):

Терморегулятор OBEH TPM202 имеет два логических устройства (ЛУ), для каждого из которых пользователь может задавать входную величину:

- измеренное на входе 1 значение;
- измеренное на входе 2 значение;

ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ

ул. Магнитогорская 1Г, к. 20

Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48

e-mail: zakaz@itrostov.ru

www. itrostov. ru

• разность значений с 1-го и 2-го входов.

Каждое логическое устройство может работать в одном из 3-х режимов:

- двухпозиционный регулятор (компаратор, устройство сравнения);
- аналоговый П-регулятор;
- измеритель-регистратор.

Режим работы каждого ЛУ определяется типом соответствующего ему выходного устройства (ВУ).

Для работы ЛУ в режиме компаратора требуется выходное устройство ключевого типа (реле, транзисторный ключ, оптосимистор, выход для управления внешним твердотельным реле).

Для работы в режиме П-регулятора требуется цифроаналоговый преобразователь с выходным сигналом 4...20 мА или 0...10 В.

Для работы в режиме измерителя-регистратора требуется цифроаналоговый преобразователь с выходным сигналом 4...20 мА.

Выходные устройства прибора ОВЕН ТРМ202:

В терморегулятор OBEH TPM202 устанавливаются два выходных устройства ВУ1 и ВУ2, жестко закрепленных за логическими устройствами. В различных сочетаниях могут быть установлены выходные устройства следующих типов:

- электромагнитное реле 8 А;
- транзисторная оптопара;
- симисторная оптопара;
- логический выход для управления внешним твердотельным реле;
- цифроаналоговый преобразователь выходного сигнала ЛУ в ток 4...20 мА (с питанием от внешнего источника);
- цифроаналоговый преобразователь выходного сигнала ЛУ в напряжение 0...10 В (с питанием от внешнего источника).

Тип выходных устройств 1 и 2 терморегулятора выбирается пользователем при заказе.

Режимы работы логических устройств (ЛУ1, ЛУ2):

Параметры	Режим работы ЛУ1 (ЛУ2)	Тип ВУ1 (ВУ2)	Диаграмма работы ВУ
CmP1(2)=00	Регулятор выключен	_	_
CmP1(2)=01	Двухпозиционный регулятор: прямой гистерезис («нагреватель»)	ключевое (Р, К, С, Т)	вкл. ДАД выкл. SP
CmP1(2)=02	Двухпозиционный регулятор: обратный гистерезис («холодильник»)	ключевое (Р, К, С, Т)	вкл. Выкл. SP
CmP1(2)=03	Двухпозиционный регулятор: П-образная логика (срабатывание при входе в границы)	ключевое (Р, К, С, Т)	вкл. ДАД выкл. SP
CmP1(2)=04	Двухпозиционный регулятор: U-образная логика (срабатывание при выходе за границы)	ключевое (Р, К, С, Т)	вкл. ДАД выкл. SP
dAC1(2)=0 CtL1(2)=HEAt	Аналоговый П-регулятор: обратное управление («нагреватель»)	ЦАП 420 мА или 010 В (И, У)	20 MA (10B) 4 MA (0B)
dAC1(2)=0	Аналоговый П-регулятор:	ЦАП 420 мА или	XP XP
CtL1(2)=CooL	прямое управление («холодильник»)	010 В (И, У)	20 MA (10B) 4 MA (0B)
dAC1(2)=Pv	Измеритель-регистратор	ЦАП 420 мA (И)	20 MA 4 MA An.L An.H
Примечание. SP – уставка, \triangle – гистерезис (параметр HYS), XP – полоса пропорциональности П-регулятора.			

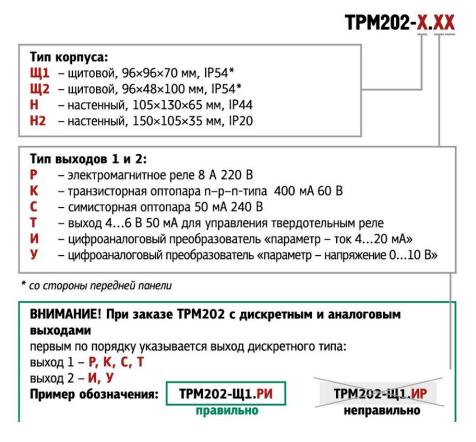
ГЕХНОЛОГИИ

ул. Магнитогорская 1Г, к. 20

e-mail: zakaz@itrostov.ru

Т.моб.: +7-903-401-25-48

Т.к. (863) 221-25-48


www. itrostov. ru

Установка временных задержек срабатывания выходного устройства прибора:

При работе ЛУ в режиме компаратора имеется возможность задания:

- времени задержки включения ВУ;
- времени задержки выключения ВУ;
- минимального времени удержания ВУ во включенном состоянии.
- минимального времени удерживания ВУ в выключенном состоянии.

Модификации:

TPM202 - X . X X

Элементы управления:

Два цифровых индикатора работают в одном из трех режимов:

- 1. Верхний индикатор отображает текущее значение регулируемой величины (Т1, Т2, ЧТ), нижний индикатор – значение ее уставки. Каналы переключают вручную кнопкой «ПРОГ.».
- 2. То же, но каналы переключаются автоматически каждые 6 с.
- 3. Индикаторы одновременно отображают текущие значения двух регулируемых величин. При нажатии кнопки «ПРОГ.» прибор переходит в режим 1.

В режиме ПРОГРАММИРОВАНИЕ цифровые индикаторы отображают название и значение программируемого параметра.

ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ

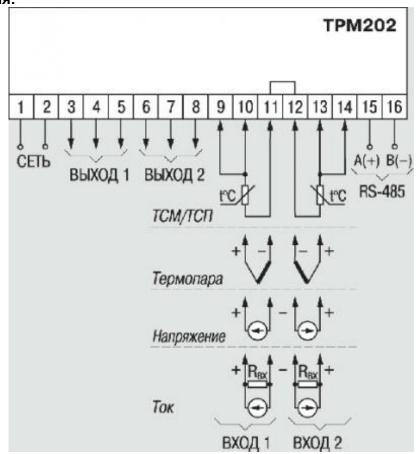
ул. Магнитогорская 1Г, к. 20

Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48

e-mail: zakaz@itrostov.ru

www. itrostov. ru

Светодиоды «ЛУ1» и «ЛУ2» показывают, для какого канала регулирования отображена информация на цифровых индикаторах.


Светодиоды «К1» и «К2» светятся, когда включено выходное устройство 1 или 2.

Светодиод «RS» светится, когда прибор осуществляет обмен данными по сети RS-485.

Функции кнопок

⊗ ♥	Кнопками и можно корректировать значение уставки непосредственно в процессе работы (если снята защита от изменения уставок).
прог.	 Кнопка осуществляет: вход в МЕНЮ программирования; вход в нужную группу параметров; циклическое пролистывание параметров в группе (при каждом нажатии кнопки значение текущего параметра записывается в память);
⊗⋉	Кнопки служат для:
прог. 🚫 😾	В некоторые группы параметров можно попасть только через пароль, который набирается после одновременного нажатия трех.

Схемы подключения:

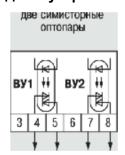
Общая схема подключения ТРМ202

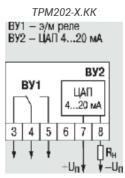
НЖЕНЕРНЫЕ ТЕХНОЛОГИИ

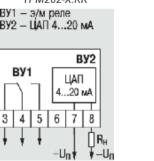
ул. Магнитогорская 1Г, к. 20

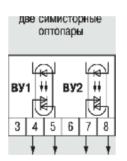
Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48

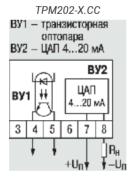
e-mail: zakaz@itrostov.ru

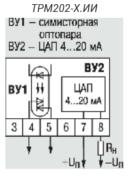

www. itrostov. ru


Схемы подключения выходных устройств:




TPM202-X.TT




ТРМ202-Х.РИ

ТРМ202-Х.КИ ТРМ202-Х.СИ