ул. Магнитогорская 1Г, к. 20

ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ

Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48

e-mail: zakaz@itrostov.ru

www. itrostov. ru

TPM201 Регулятор с универсальным входом и RS-485.

ОВЕН ТРМ201 в настенном корпусе H2

ОВЕН ТРМ201 в корпусе Н

ОВЕН ТРМ201 в корпусе Щ1

ОВЕН ТРМ201 в корпусе Щ2

Терморегулятор ОВЕН ТРМ201 – аналог ОВЕН ТРМ1 с интерфейсом RS-485.

Применяется для измерения, регистрации или регулирования температуры теплоносителей и различных сред в холодильной технике, сушильных шкафах, печах различного назначения, пастеризаторах и другом технологическом оборудовании, а также для измерения других физических параметров (веса, давления, влажности и т. п.).

Прибор выпускается в 4-х типах корпусов: настенном Н, щитовых Щ1, Щ2 и новом эргономичном корпусе Н2

Функциональные возможности измерителя-регулятора ОВЕН ТРМ201:

- Универсальный вход для подключения широкого спектра датчиков температуры, давления, влажности и др.
- Регулирование входной величины:
 - о двухпозиционное регулирование
 - о аналоговое П-регулирование.
- Цифровая фильтрация и коррекция входного сигнала, масштабирование шкалы для аналогового входа
- Регистрация измеренной величины при установке на выходе ЦАП 4...20 мА (модификация ТРМ201-Х.И)
- Вычисление и индикация квадратного корня из измеряемой величины (например, для регулирования мгновенного расхода)
- Встроенный интерфейс RS -485 (протокол OBEH, Modbus ASCII/RTU)
- Конфигурирование на ПК или с лицевой панели прибора
- Быстрый доступ к изменению уставки с лицевой панели прибора
- Уровни защиты настроек прибора для разных групп специалистов

Технические характеристики:

Питание

Напряжение питания 90245 В переменного тока	
Частота напряжения питания	4763 Гц

Универсальный вход

TIME CONTRACT		
Типы входных датчиков и сигналов	см. таблицу «Характеристики измерительных	
	датчиков»	
Время опроса входа	1 c	
Входное сопротивление при подключении источника сигнала:		
– тока	100 Ом ± 0,1 % (при подключении внешнего резистора)	
– напряжения	не менее 100 кОм	
Предел допустимой основной погрешности:		
– для термометров сопротивления	±0,25 %	
– для остальных видов сигналов	±0,5 %	

Интерфейс связи

Тип интерфейса	RS-485
Скорость передачи данных	2.4; 4.8; 9.6; 14.4; 19.6; 28.8; 38.4; 57.6; 115.2 кбит/с
Тип кабеля	экранированная витая пара
Протокол передачи данных	OBEH, Modbus RTU, Modbus ASCII

ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ

ул. Магнитогорская 1Г, к. 20

Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48

e-mail: zakaz@itrostov.ru

www. itrostov. ru

Корпус

Габаритные размеры и степень защит	ъ корпуса
Щитовой Щ1	96×96×70 мм, IP54*
Щитовой Щ2	96×48×100 мм, IP54*
Настенный Н	130×105×65 мм, IP44
Настенный Н2	150×105×35 мм, IP20
* со стороны передней панели	

Характеристики выходных устройств

жаракториотики в	ыходных устройств	
Обозначение	Тип выходного устройства (ВУ)	Электрические характеристики
Р	электромагнитное реле	8 A при 220 B, cos φ > 0,4
К	транзисторная оптопара структуры n-p-n типа	400 мА при 60 В пост. тока
С	симисторная оптопара	50 мА при 240 В (пост. откр. симистор) или 0,5 А (симистор вкл. с частотой не более 50 Гц и тимп. = 5 мс)
C3	три симисторные оптопары для управления трехфазной нагрузкой	50 мА при 240 В (пост. откр. симистор) или 0,5 А (симистор вкл. с частотой не более 50 Гц и тимп. = 5 мс)
И	цифроаналоговый преобразователь «параметр–ток 4…20 мА»	нагрузка 01000 Ом, напряжение питания 1030 В пост. тока
У	цифроаналоговый преобразователь «параметр–напряжение 010 В»	нагрузка не менее 2 кОм, напряжение питания 1532 В
Т	выход для управления твердотельным реле	выходное напряжение 46 В, макс. выходной ток 50 мА

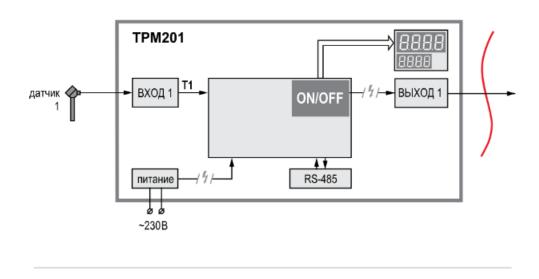
Характеристики измерительных датчиков

Код in.t	Тип датчика	Диапазон измерений
r385	TCΠ50 W100 = 1.385	−200+750 °C
r.385	TCΠ100 W100 = 1.385 (Pt 100)	–200+750 °C
r391	ТСП50 W100 = 1.391	−200+750 °C
r.391	TCΠ100 W100 = 1.391	−200+750 °C
r-21	ТСП гр. 21 (R0=46 Ом, W100 = 1.391)	−200+750 °C
r426	TCM50 W100 = 1.426	−50+200 °C
r.426	TCM100 W100 = 1.426	−50+200 °C
r-23	TCM гр. 23 (R0=53 Ом, W100 = 1.426)	−50+200 °C
r428	TCM50 W100 = 1.428	−190+200 °C
r.428	TCM100 W100 = 1.428	−190+200 °C
E_A1	термопара ТВР (А-1)	0+2500 °C
E_A2	термопара ТВР (А-2)	0+1800 °C
E_A3	термопара ТВР (А-3)	0+1800 °C
Eb	термопара ТПР (В)	+200+1800 °C
EJ	термопара ТЖК (J)	–200+1200 °C
EK	термопара ТХА (K)	–200+1300 °C
EL	термопара ТХК (L)	–200+800 °C
En	термопара ТНН (N)	–200+1300 °C
Er	термопара ТПП (R)	0+1750 °C
ES	термопара ТПП (S)	0+1750 °C
Et	термопара ТМК (Т)	–200+400 °C
i 0_5	ток 05 мА	0100 %
i 0.20	ток 020 мА	0100 %
i 4.20	ток 420 мА	0100 %
U-50	напряжение –50+50 мВ	0100 %
U0_1	напряжение 01 В	0100 %

Условия эксплуатации

Температура окружающего воздуха	+1+50 °C	
Атмосферное давление	86106,7 кПа	
Относительная влажность воздуха (при +35 °C)	3080 %	

ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ


ул. Магнитогорская 1Г, к. 20

Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48


e-mail: zakaz@itrostov.ru

www. itrostov. ru

Функциональная схема прибора

Варианты применения:

Универсальный вход прибора ТРМ201

Терморегулятор ТРМ201 имеет один универсальный вход для подключения измерительных датчиков:

- термопреобразователей сопротивления типа TCM или TCП 50/100, Pt100;
- термопар ТХК, ТХА, ТНН, ТЖК, ТПП(S), ТПП(R), ТВР(A-1, 2, 3), ТПР(В), ТМК(Т);
- активных датчиков с унифицированным сигналом тока 0...5 мА, 0(4)...20 мА или напряжения -50...+50 мВ, 0...1 В.

Логическое устройство прибора ОВЕН ТРМ201 (ЛУ)

Логическое устройство прибора ОВЕН ТРМ201 может работать в одном из 3-х режимов:

- двухпозиционный регулятор (компаратор, устройство сравнения);
- аналоговый П-регулятор;
- измеритель-регистратор.

Режим работы ЛУ определяется типом установленного в приборе выходного устройства (ВУ).

Для работы ЛУ в режиме компаратора требуется выходное устройство ключевого типа (реле, транзисторный ключ, оптосимистор, логический выход для управления внешним твердотельным реле).

Для работы в режиме П-регулятора и измерителя-регистратора требуется цифроаналоговый преобразователь с выходным сигналом 4...20 мА.

Выходные устройства прибора ОВЕН ТРМ201

В терморегулятор ТРМ201 может быть установлено одно из перечисленных ниже выходных устройств (ВУ):

ул. Магнитогорская 1Г, к. 20

Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48

e-mail: zakaz@itrostov.ru

www. itrostov. ru

- ВУ ключевого типа электромагнитное реле 8 А, транзисторная или симисторная оптопара, логический выход для управления внешним твердотельным реле;
- цифроаналоговый преобразователь выходного сигнала ЛУ в ток 4...20 мА с питанием от внешнего источника.

Кроме того, прибор ОВЕН ТРМ201 имеет возможность управления трехфазной нагрузкой. Для этого в прибор устанавливается ВУ, представляющее собой три симисторных оптопары, имеющие схему контроля перехода

Тип выходного устройства, установленного в терморегуляторе, выбирается пользователем при заказе.

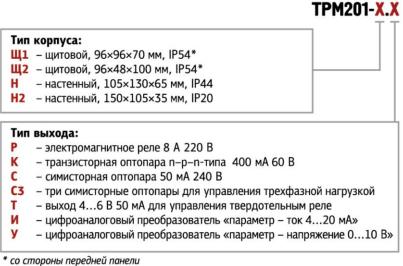
Режимы работы логических устройств (ЛУ1, ЛУ2)

Параметры	Режим работы ЛУ1 (ЛУ2)	Тип ВУ	Диаграмма работы ВУ
CmP1(2)=00	Регулятор выключен	_	-
CmP1(2)=01	Двухпозиционный регулятор: прямой гистерезис («нагреватель»)	ключевое (Р, К, С, Т, С3)	вкл. ДАД выкл. SP
CmP1(2)=02	Двухпозиционный регулятор: обратный гистерезис («холодильник»)	ключевое (Р, К, С, Т, С3)	вкл. ДАД выкл. SP
CmP1(2)=03	Двухпозиционный регулятор: Побразная логика (срабатывание при входе в границы)	ключевое (Р, К, С, Т, С3)	вкл. ДАД выкл. SP
CmP1(2)=04	Двухпозиционный регулятор: U- образная логика (срабатывание при выходе за границы)	ключевое (Р, К, С, Т, С3)	вкл. ДАД выкл. SP
dAC1(2)=0 CtL1(2)=HEAt	Аналоговый П-регулятор: обратное управление («нагреватель»)	ЦАП 420 мА или 010 В (И, У)	20 MA (10B) 4 MA (0B)
dAC1(2)=0 CtL1(2)=CooL	Аналоговый П-регулятор: прямое управление («холодильник»)	ЦАП 420 мА или 010 В (И, У)	20 MA (10B) 4 MA (0B)
dAC1(2)=Pv	Измеритель-регистратор	ЦАП 420 мА (И)	20 MA 4 MA An.L An.H

регулятора.

Установка временных задержек срабатывания выходного устройства прибора

При работе ЛУ в режиме двухпозиционного регулятора имеется возможность задания:


- времени задержки включения ВУ;
- времени задержки выключения ВУ;
- минимального времени удержания ВУ во включенном состоянии;
- минимального времени удержания ВУ в выключенном состоянии.

Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48 ул. Магнитогорская 1Г, к. 20

e-mail: zakaz@itrostov.ru

www. itrostov. ru

Модификации:

TPM201 - X . X

Элементы управления:

Два цифровых индикатора в режиме РАБОТА отображают:

- верхний индикатор текущее значение регулируемой величины;
- нижний индикатор значение ее уставки.

В режиме ПРОГРАММИРОВАНИЕ цифровые индикаторы отображают название и значение программируемого

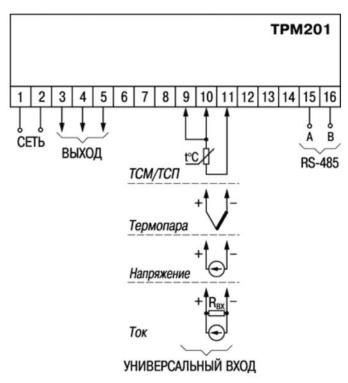
Светодиод «К» светится, когда включено выходное устройство.

Светодиод «RS» светится, когда прибор осуществляет обмен данными по сети RS 485.

Функции кнопок

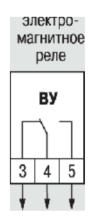
	Кнопками и можно корректировать значение уставки непосредственно в процессе работы (если снята защита от изменения уставки).
ПРОГ.	 Кнопка осуществляет: вход в МЕНЮ программирования; вход в нужную группу параметров; циклическое пролистывание параметров в группе (при каждом нажатии кнопки значение текущего параметра записывается в память).
прог. 🚫 😸	В некоторые группы параметров можно попасть только через пароль, который набирается после одновременного нажатия трех кнопок.
⊗ ∀	Кнопки служат для:

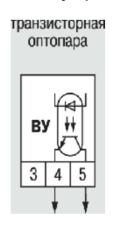
ИНЖЕНЕРНЫЕ ТЕХНОЛОГИИ

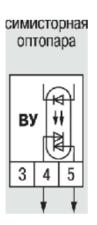

ул. Магнитогорская 1Г, к. 20

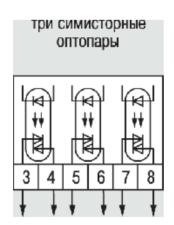
Т.к. (863) 221-25-48 Т.моб.: +7-903-401-25-48

e-mail: zakaz@itrostov.ru

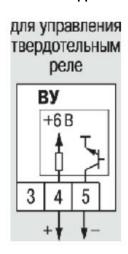

www. itrostov. ru

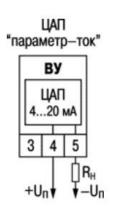

Схемы подключения:




Общая схема подключения ТРМ201

Схемы подключения выходных устройств:





Схемы подключения выходных устройств:

ТЕХНОЛОГИИ

ул. Магнитогорская 1Г, к. 20

e-mail: zakaz@itrostov.ru

Т.моб.: +7-903-401-25-48

Т.к. (863) 221-25-48

www. itrostov. ru

Интерфейс RS-485

В ТРМ201 установлен модуль интерфейса RS-485, организованный по стандартному протоколу ОВЕН, Modbus ASCII/RTU.

Интерфейс RS-485 позволяет:

- конфигурировать прибор на ПК (программа-конфигуратор предоставляется бесплатно);
- передавать в сеть текущие значения измеренной величины и уставки, а также любых программируемых параметров.

Подключение ТРМ201 к ПК производится через адаптер ОВЕН АСЗ.

При интеграции TPM201 в АСУ ТП в качестве программного обеспечения можно использовать SCADA-систему Owen Process Manager или какую-либо другую программу.

Компания ОВЕН бесплатно предоставляет для ТРМ201:

- драйвер для Trace Mode;
- OPC-сервер для подключения прибора к любой SCADA-системе или другой программе, поддерживающей ОРС-технологию;
- библиотеки WIN DLL для быстрого написания драйверов.