Ultrasonic Sensors

Ultrasonic proximity sensors

- Non-contact detection and distance measurement of objects using ultrasound
- Teach-in
- High measurement accuracy
- Large scanning ranges
- Detects even transparent objects and liquids
- Immune to airborne particulate matter
- Compact, dirt-resistant design
- Binary switching output or analogue output

Ultrasonic double-sheet detector

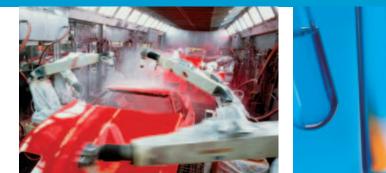
- Detection of double sheets and missing sheets
- Automatic setting, no adjustment necessary
- Spectrum of materials from ultra-thin film to thin metal sheets

176 SENSICK CATALOGUE 05-08-2006

Contents

Ultrasonic sensors

Detection with ultrasonic sensorsReviewpage 180Operating principlepage 182


Ultrasonic proximity sensors	
UM30	page <u>1</u> 86
UM18	page 194
UC12	page 196

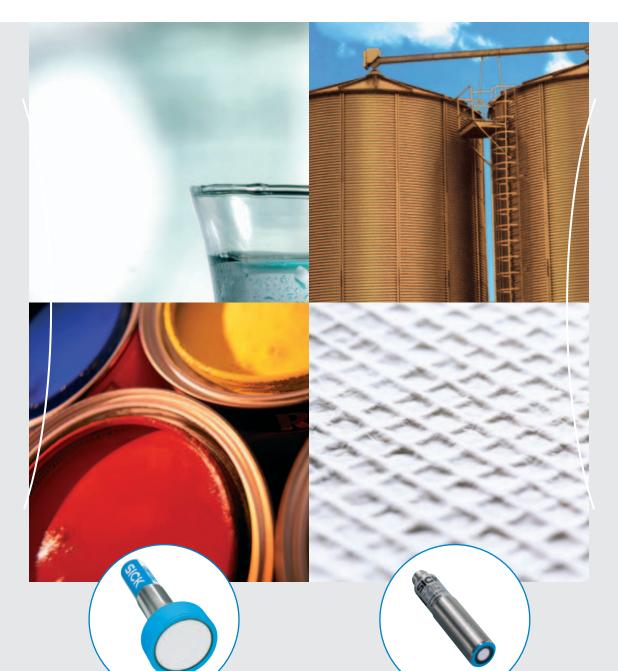
Ultrasonic double-sheet detector UM18 page 198

Ultrasonic sensors →

Straightforward and with many benefits: Detection by ultrasonic.

Light and sound are two natural phenomena which let every living being recognise their environment without physical contact and over widely varying distances. Likewise, industrial processes require reliable information.

SICK's ultrasonic sensors detect objects and measure distances with high accuracy. The realm of sound is a world of its own, and for this reason ultrasonic sensors are simply the better choice in many industrial applications requiring sensor technology.


Detection and measurement ,regardless of material

Transparent objects such as glass and film are often a difficult task for sensors, as are clear and coloured fluids. But it is hard to deceive ultrasonic. Almost all materials affect and reflect sound waves.

Never confused by loud colours

Not even the oddest colours can bias ultrasonic sensors. Reflecting objects do not irritate them at all. When objects change colour, there is no need to readjust the sensors.

They just go on working as before – can anyone think of a more convenient way?

Highly available, even under difficult conditions

Dust and dirt, steam and spray are no problem for ultrasonic sensors. Unfavourable environments have little effect on them. Interferences are simply "blanked out". And they do not even mind strong light and adverse temperatures.

Sound has an advantage - even on superficial inspection

Whether the surface is rough or smooth, reflecting or retroreflecting, regular or irregular in shape, ultrasonic sensors are generally unaffected. They detect objects reliably and almost independently of their appearance.

178 SENSICK CATALOGUE 05-08-2006 05-08-2006 SENSICK CATALOGUE 179

Ultrasonic proximity sensors UM30, UM18 and UC12 powerful devices for almost any application.

Even when it's extremely dusty: The ultrasonic proximity sensors are not impaired by foreign bodies in the air, mist, vapour and dirt. Even the background suppression is near perfect. We call this concentrating on the essentials.

UM30

UM18

Far and near different scanning ranges

Short, medium or long-distance? The UM30 has three different scanning ranges. The minimum operating distance begins at a minute 30 mm, and for really long-distance applications, to the limit of the scanning range is astonishing 6000 mm.

Detection or measurement as required

The UM30 can be fitted with a binary output or analogue interface. Depending on the task on hand, objects can simply be detected or their distance measured.

Smaller diameter with the same functionality

The UM18 has 1 or 2 switching outputs and extended features (for instance, ObSB mode): The sensor is taught a fixed background and reliably switches when an object is detected between sensor and background: Perfect for detecting round or tilted surfaces!

Typical applications

- Level control of solids and liquids
- Checking presence of outer packaging
- Assignment control during packaging
- Checking presence of PET bottles
- Diameter control
- Loop control

Typical applications

- Positioning of small objects in tight environments
- Checking for the presence of small, transparent or opaque outer packaging

UC12

After 2 seconds/shortest time to operation

Position object, press Teach-in button, ready. There is no faster way to commission an ultrasonic sensor.

This flexibility is further enhanced by the ObSB and window modes.

Typical applications

- Checking presence of very dark objects
- Level control in the food and drinks industry
- Detecting transparent packaging
- Detecting printed/coloured paper during the printing process

Ultrasonic proximity sensors point by point

Easy to learn - Teach-in

Setting a sensor's parameters can sometimes be time consuming - unless you just show it what to do. We call that "Teach-in". This makes the UM30 quick and easy to handle. And when changes have to be made, it can be retaught in a jiffy to cope with the new situation.

Well balanced and reliable temperature compensation

Ultrasonic time measurements depend on the state of the medium transmitting the sound, i.e. the air. UM30 sensors balance temperature fluctuations out automatically, thereby ensuring precision and reliability.

Current or voltage the appropriate signal automatically

The analogue output of the UM30 sensor switches automatically between current and voltage. With its 4 to 20 mA or 0 to 10 V DC, it fits perfectly into any measuring environment.

Q or \overline{Q} , no problem here

What signal does the application require, Q or Q? The UM30 has an invertible switching output and can cope with both.

ObSB mode - Object between sensor and background

Perfect for detecting round and tilted surfaces, UM18 and UC12.

180 SENSICK CATALOGUE SENSICK CATALOGUE 181 05-08-2006 05-08-2006

Mode of operation: detecting, measuring and switching with ultrasonic proximity sensors.

The detection of objects with ultrasonic sensors opens up a new dimension. Objects are positioned, detected and controlled virtually irrespective of material and environment.

Sensors with a profile – defining the detection area

SICK Ultrasonic Sensors generate an ultrasonic wave by means of a piezo element in the front part of the housing. The wave spreads in the atmosphere in accordance with the laws of physics. The same piezo element can detect and measure the sound reflected by an object. Therefore it functions alternately as sender and receiver (transceiver).

The measurement principle of ultrasonic sensors is based on the time taken for ultrasonic to travel through the medium air. The signals are transmitted in defined "packages".

With the help of its processing electronics, the transceiver evaluates the time taken between the transmission of a sound "package" and the arrival of the reflection from an object. As a result, either a signal proportionate to the distance is sent via an analogue interface, or a switching signal depending on a previously set distance parameter is sent through a binary output. The accuracy of the measurement and the maximum scanning range lie within a tolerance range which depends mainly on the state of the carrier medium air and the roughness of the object in question.

Sensors in action – scanning and measuring reflections

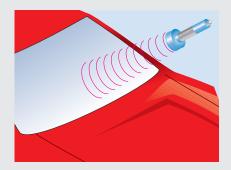
Ultrasonic sensors UM30 are used as non-contact proximity switches which process reflected signals, e.g. from objects on a conveyor belt. An essential benefit of the working principle of ultrasonic sensors is the almost complete blanking of the background, a prerequisite for accurate detection.

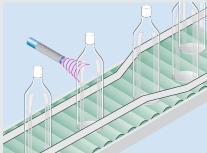
Scanning round corners – thanks to the right accessories

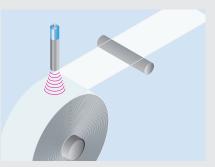
Ultrasonic sensors UM30 are small and easily installed even in confined spaces. And if things get really tight, the right accessories can help out. Suitable reflectors allow sound to be deflected almost without loss.

Positioning

Object detection and distance measurement independent of material


meas- Red

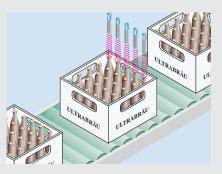

Detection

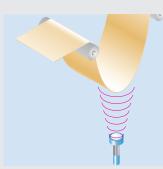

Recognise transparent objects

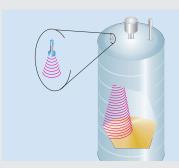
Unwind

Distance measurement for diameter check

Package


"Engaged" check on package content


Adjust


Control material looping

Monitoring

Level control in silos and containers

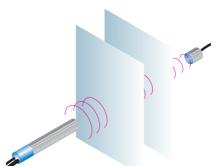
182 SENSICK CATALOGUE 05-08-2006 05-08-2006 SENSICK CATALOGUE 183

Ultrasonic double-sheet control UM18, the specialist for double layers – with smart vision.

Detection of two superimposed, thin sheets is the key feature of UM18, a specialist for double-layers - in virtually all environments and nearly independent of transparency and material shape.

UM18 FOR DOUBLE-SHEET CONTROL

When ultrasonic is used to detect two thin sheets, one of which is immediately behind the other, e.g. paper, film or thin sheet material, separate sender and receiver units are required. The continuously transmitted sonic waves packages cause vibrations in the first sheet which it then transmits via the intervening air to the second sheet, which also begins to vibrate. The receiver unit is able to detect these weakened signals via the air.


The sender and receiver units of the UM18 are only 40 mm apart and work effectively without having to be parametered. They adjust automatically to a wide spectrum of different materials.

UM18 sheet for sheet

- Double-sheet check for film, paper, corrugated cardboard and fine metal sheet
- Automatic adjustment Alignment and Teach-in unnecessary
- Compact design
- Plug and Play
- 2 PNP outputs for double- and mis-fed-sheets

A sensor that does not stop at the surface

Detection of two superimposed sheets of material is no easy matter.

The UM18 can find out whether one or two sheets of film, paper, metal or cardboard lie between its sender and receiver. Which other sensor is able to look beyond the surface?

No need to tell it what to do

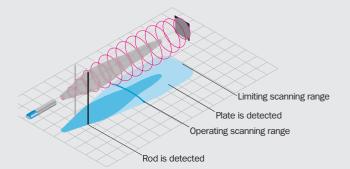
The UM18 adjusts to its task itself. Fully automatically. Film down to 0.4 mm in thickness, paper of 1200 g/m² or metal sheet of 0.3 mm thickness – almost anything is detected.

Small and versatile

The sender and receiver of the UM18 are located in an 18 mm threaded tube, and, because they are mounted only 40 mm apart, can be accommodated in the most confined spaces.

With regard to alignment to the sheets, the UM18 is undemanding. It puts up with as much as 45 degrees deviation from the vertical.

SENSICK CATALOGUE 05-08-2006

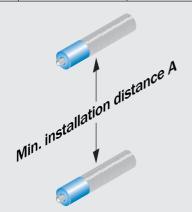

Detection range and assembly of ultrasonic sensors.

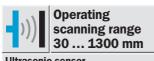
Detection range

To determine the area of detection of the sensors, a series of measurements are carried out with two standardised objects, a thin round rod and a plate. The three-dimensional area within which the sensor responds to the rod has the form of a thin club. It marks the typical operating scanning range of the sensor.

The sensor responds to the plate within the area of a larger beam. This area defines the maximum or limit detection range of the sensor.

When projected onto a two-dimensional grid, typical profiles are created. These are the operating diagrams of the ultrasonic sensors, from which the operating scanning range, the limiting scanning range, the specific shape and the blind zone of the detection range can be read off. Objects which are smaller than the round rod may only be detected within an area smaller than the operating scanning range.


Every ultrasonic sensor has its characteristic club-shaped detection range. It is narrow for smaller objects and wide for larger ones. The typical detection areas are depicted by sound-beam diagrams.


Installation

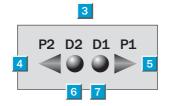
Ultrasonic sensors installed close together or opposite one another may affect each other mutually. For this reason, different axial and lateral distances have to be maintained depending on the detection range. The sensor with the largest detection range determines the minimum distance.

Operating scanning range	Min. installation distance A	Min. installation distance B
0.25 m	10 cm	> 100 cm
0.35 m	> 30 cm	> 170 cm
1.3 m	> 60 cm	> 540 cm
3.4 m	> 160 cm	> 1600 cm
6 m	> 260 cm	> 3000 cm

Ultrasonic sensor

- Independent of material shape (including films, glass and bottles)
- Teach-in
- Insensitive to dirt, dust and fog
- Operating scanning range up to 1300 mm
- Binary outputs or analogue output

Dimensional drawing

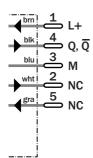


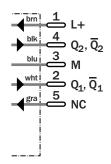
See chapter Accessories Mounting systems

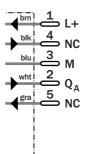
Adjustments possible

All types

- 1 Fastening nuts, width across 36 mm
 - Connection plug M12
- 3 Control and display panel
 - Setting key 2
- 5 Setting key 1
- LED 2
- 7 LED 1

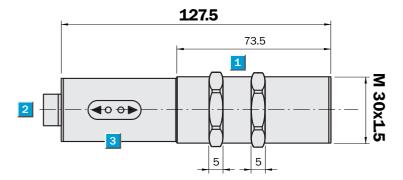

Connection types		
UM30-11111	UM30-11112	UM30-11113
UM30-12111	UM30-12112	UM30-12113
UM30-13111	UM30-13112	UM30-13113




5-pin, M12



5-pin, M12



- Independent of material shape (including films, glass and bottles)
- Teach-in
- Insensitive to dirt, dust and fog
- Operating scanning range up to 1300 mm
- Binary outputs or analogue output

Dimensional drawing

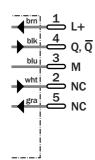
((

See chapter Accessories Mounting systems

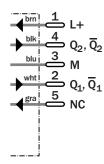
Adjustments possible
All types

- 1 Fastening nuts, width across 36 mm
 - Connection plug M12
- 3 Control and display panel
 - Setting key 2
- 5 Setting key 1
- LED 2
- 7 LED 1

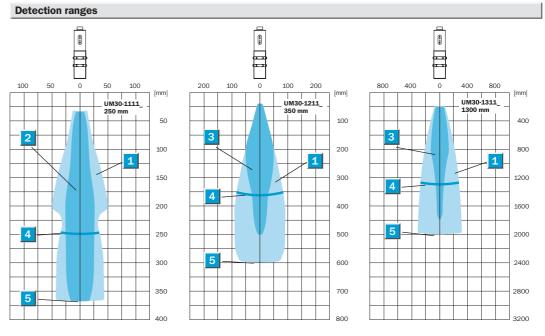
Connection types


UM30-12115 UM30-11115 UM30-13115

UM30-11114 UM30-13114 UM30-12114



5-pin, M12



Technical data		UM30-	11115 11114	12115 1211	L4 13115	13114		
Operating scanning range	30 250 mm (350)							
(limiting scanning range)	60 350 mm (600)							
	200 1300 mm (2000)			-				
Ultrasonic frequency	320 kHz					_		
	400 kHz							
	200 kHz			-				
Resolution	0,36 mm							
Reproducibility	± 0.15 % of final value							
Accuracy	≤ 2 % of final value							
Supply voltage V _S	9 30 V DC ¹⁾							
Residual ripple	± 10 %							
Current consumption 2)	≤ 60 mA							
Switching outputs, reversible ³⁾	Q: NPN							
	Q ₁ , Q ₂ : 2 x NPN							
Response time	50 ms							
	70 ms							
	110 ms							
Switching frequency	11/s							
	8/s							
	6/s							
Switching hysteresis	20 mm							
	5 mm							
	2.5 mm							
Standby delay	2 s							
Connection type	Plug M12, 5-pin							
Enclosure rating	IP 65							
Ambient temperature	Operation -20 °C +70 °C	(4)						
	Storage -40 °C +85 °C							
Weight	260 g							
Housing material ⁵⁾	Nickel-plated brass						·	

²⁾ Without load

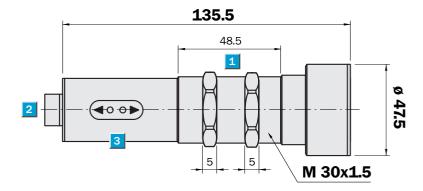
⁵⁾ Plastic parts: PBT Ultrasonic transducer: Polyurethanefoam, glass epoxy resin

Туре	Order no.
UM30-11114	6030551
UM30-11115	6030542
UM30-12114	6030552
UM30-12115	6030543
UM30-13114	6030553
UM30-13115	6030544

Order information

- Aligned plate 500 x 500 mm
- Pipe diameter 10 mm
- Pipe diameter 27 mm

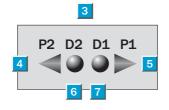
SENSICK CATALOGUE 189 05-08-2006

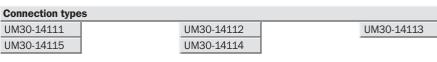

³⁾ Outputs short-circuit protected $I_{\text{max}} = 200 \text{ mA}$ NPN: High = $V_{\text{S}}/\text{LOW} \le 2 \text{ V}$

⁴⁾ Temperature compensation at $-20~^{\circ}\text{C}$... $+65~^{\circ}\text{C}$

- Independent of material shape (including films, glass and bottles)
- Teach-in
- Insensitive to dirt, dust and fog
- Operating scanning range up to 3400 mm
- Binary outputs or analogue output

Dimensional drawing

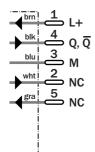


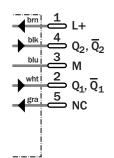


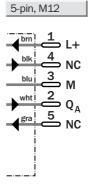
See chapter Accessories Mounting systems

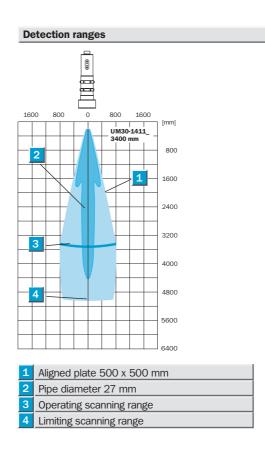
Adjustments possible All types

- Fastening nuts, width across 36 mm
- Connection plug M12
- Control and display panel
 - Setting key 2
- Setting key 1
- LED 2
- LED 1

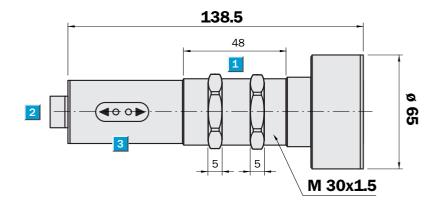





5-pin, M12


pin, M12	

Technical data	UM	130-	14111 14	112 14113	14114	14115			
Operating scanning range	350 3400 mm (5000)								
(limiting scanning range)			-						
Ultrasonic frequency	120 kHz								
Resolution	1 mm								
Reproducibility	\pm 0.15 % of final value								
Accuracy	≤ 2 % of final value								
Supply voltage V _S	DC 9 30 V ¹⁾								
Residual ripple	± 10 %								
Current consumption ²⁾	≤ 60 mA								
Switching outputs, reversible ³⁾	Q: PNP								
	Q: NPN								
	Q ₁ , Q ₂ : 2 x PNP								
	Q ₁ , Q ₂ : 2 x NPN								
Analogue output, reversible ^{3) 4)}	Q _A : 4 20 mA/0 10 V								
Response time	180 ms								
Switching frequency	3/s								
Switching hysteresis	50 mm								
Standby delay	2 s								
Connection type	Plug M12, 5-pin								
Enclosure rating	IP 65								
Ambient temperature 5)	Operation -20 °C +70 °C								
	Storage -40 °C +85 °C								
Weight	310 g								
Housing material	Nickel-plated brass								
1) Limit values 2) Without load 3) Outputs short-circuit protected I _{max} = 200 mA PNP: High = V _S -(< 2 V)/LOW = 0 V	NPN: High = $V_S/LOW \le 2 V$ 4) Automatic switching between volta and current outputs dependent on		Current output 4 20 mA: $R_L \leq 500 \ \Omega, \ V_S \geq 20 \ V;$ $R_L \leq 100 \ \Omega, \ V_S \geq 12 \ V$ Voltage output 0 10 V: $R_L \geq 100 \ k\Omega; \ V_S > 15 \ V$				erature cor) +65 °(mpensatior C	1


Order information						
Туре	Order no.					
UM30-14111	6025658					
UM30-14112	6025663					
UM30-14113	6025668					
UM30-14114	6030555					
UM30-14115	6030546					

SENSICK CATALOGUE 191

- Independent of material shape (including films, glass and bottles)
- Teach-in
- Insensitive to dirt, dust and fog
- Operating scanning range up to 6000 mm
- Binary outputs or analogue output

Dimensional drawing

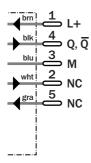
Adjustments possible

All types

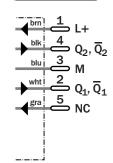
- 1 Fastening nuts, width across 36 mm
- Connection plug M12
- 3 Control and display panel
 - Setting key 2
- 5 Setting key 1
- LED 2
- 7 LED 1

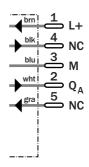
 ϵ

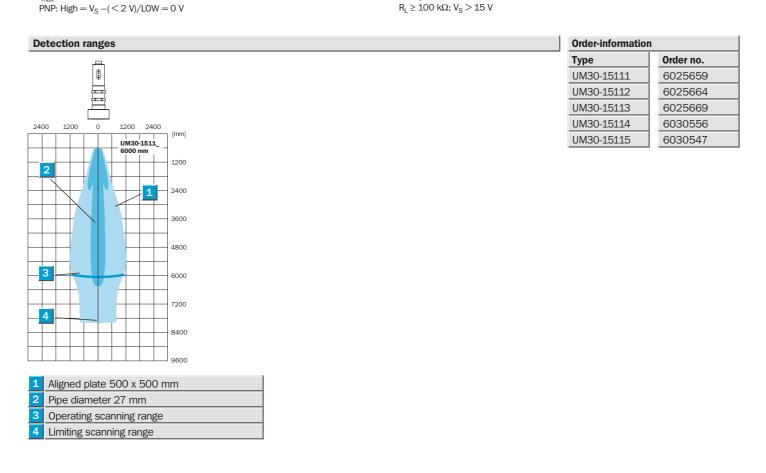
See chapter Accessories


Mounting systems

UM30-15112 UM30-15114 UM30-15113

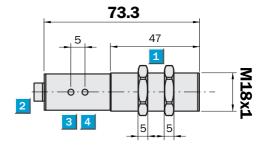






5-pin, M12

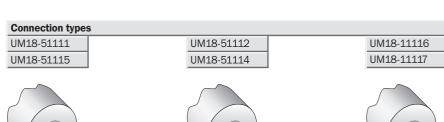
000 6000 mm (8000) 00 kHz mm 0.0.15 % of final value 1.2 % of final value 1.2 % of final value 1.2 % of final value 1.3 % 1.4 % 1.5 % 1									
0 kHz . mm : 0.15 % of final value 2 % of final value 0.0 9 30 V 1) : 10 % 60 mA									
mm 2 % of final value 2 % of final value 0 9 30 V 1) 10 % 60 mA									
mm 2 % of final value 2 % of final value 0 9 30 V 1) 10 % 60 mA									
2 % of final value 2 % of final value 0 9 30 V ¹⁾ 10 % 60 mA									
2 % of final value 0C 9 30 V ¹⁾ 10 % 60 mA									
0C 9 30 V ¹⁾ : 10 % 60 mA									
: 10 % 60 mA									
60 mA									
: PNP									
			•		·				
: NPN									
) ₁ , Q ₂ : 2 x PNP									
) ₁ , Q ₂ : 2 x NPN									
A: 4 20 mA/0 10 V									
40 ms									
/s									
00 mm									
S									
lug M12, 5-pin									
² 65									
peration -20 °C +70 °C									
torage -40 °C +85 °C									
60 g									
lickel-plated brass									
NPN: High = $V_S/LOW \le 2~V$ Automatic switching between voltage and current outputs dependent on load	Current output 4 20 mA: $ R_L \leq 500 \ \Omega, \ V_S \geq 20 \ V; \\ R_L \leq 100 \ \Omega, \ V_S \geq 12 \ V $ Voltage output 0 10 V:					•		ation	
1	ug M12, 5-pin 0 65 peration -20 °C $+70$ °C torage -40 °C $+85$ °C 60 g ickel-plated brass NPN: High = $V_S/LOW \le 2$ V Automatic switching between voltage	ug M12, 5-pin 2 65 peration -20 °C +70 °C torage -40 °C +85 °C 60 g ickel-plated brass NPN: High = V _s /LOW ≤ 2 V Automatic switching between voltage and current outputs dependent on load R _L ≤ 5 Voltage	$\begin{array}{c} \text{ug M12, 5-pin} \\ \text{2 65} \\ \text{peration } -20 \text{ °C} +70 \text{ °C} \\ \text{torage } -40 \text{ °C} +85 \text{ °C} \\ \text{60 g} \\ \text{ickel-plated brass} \\ \\ \text{NPN: High } = \text{V}_{\text{S}}/\text{LOW} \leq 2 \text{ V} \\ \text{Automatic switching between voltage} \\ \text{and current outputs dependent on load} \\ \text{R}_{\text{L}} \leq 500 \ \Omega, \text{ V}_{\text{N}} \\ \text{R}_{\text{L}} \leq 100 \ \Omega, \text{ V}_{\text{Voltage output}} \\ \text{Voltage output} \\ \end{array}$	ug M12, 5-pin 0 65 peration -20°C $+70^{\circ}\text{C}$ torage -40°C $+85^{\circ}\text{C}$ 60 g ickel-plated brass NPN: High $= \text{V}_{\text{S}}/\text{LOW} \le 2\text{V}$ Automatic switching between voltage and current outputs dependent on load R _L $\le 500\Omega$, V _S $\ge 20\text{V}$; R _L $\le 100\Omega$, V _S $\ge 12\text{V}$ Voltage output 0 10°V	ug M12, 5-pin 65 peration -20 °C $+70$ °C torage -40 °C $+85$ °C 60 g ickel-plated brass NPN: High $=$ V _S /LOW \le 2 V Automatic switching between voltage and current outputs dependent on load R _L \le 500 Ω , V _S \ge 20 V; R _L \le 100 Ω , V _S \ge 12 V	$\begin{array}{c} \text{ug M12, 5-pin} \\ \text{Deration } -20 \text{ °C} +70 \text{ °C} \\ \text{torage } -40 \text{ °C} +85 \text{ °C} \\ \text{60 g} \\ \text{ickel-plated brass} \\ \\ \text{NPN: High} = \text{V}_{\text{S}}/\text{LOW} \leq 2 \text{ V} \\ \text{Automatic switching between voltage} \\ \text{and current outputs dependent on load} \\ \text{R}_{\text{L}} \leq 500 \ \Omega, \ \text{V}_{\text{S}} \geq 20 \ \text{V}; \\ \text{R}_{\text{L}} \leq 100 \ \Omega, \ \text{V}_{\text{S}} \geq 12 \ \text{V}} \\ \text{Voltage output } 0 \ \dots 10 \ \text{V}; \\ \end{array}$	$\begin{array}{c} \text{ug M12, 5-pin} \\ \text{Deration } -20 ^{\circ}\text{C} +70 ^{\circ}\text{C} \\ \text{torage } -40 ^{\circ}\text{C} +85 ^{\circ}\text{C} \\ \text{60 g} \\ \text{ickel-plated brass} \\ \\ \text{NPN: High} = V_{\text{S}}/\text{LOW} \leq 2 \text{ V} \\ \text{Automatic switching between voltage} \\ \text{and current outputs dependent on load} \\ \text{R}_{\text{L}} \leq 500 \Omega, V_{\text{S}} \geq 20 \text{ V}; \\ \text{R}_{\text{L}} \leq 100 \Omega, V_{\text{S}} \geq 12 \text{ V} \\ \text{Voltage output 0 10 V:} \\ \end{array}$	$\begin{array}{c} \text{ug M12, 5-pin} \\ \text{Deration } -20 ^{\circ}\text{C} +70 ^{\circ}\text{C} \\ \text{torage} -40 ^{\circ}\text{C} +85 ^{\circ}\text{C} \\ \text{60 g} \\ \text{ickel-plated brass} \\ \\ \text{NPN: High} = \text{V}_{\text{S}}/\text{LOW} \leq 2 ^{\vee}\text{Current output } 4 20 ^{\vee}\text{mA:} \\ \text{Automatic switching between voltage} \\ \text{and current outputs dependent on load} \\ \\ \text{R}_{\text{L}} \leq 500 \Omega, \text{V}_{\text{S}} \geq 20 ^{\vee}\text{V;} \\ \text{R}_{\text{L}} \leq 100 \Omega, \text{V}_{\text{S}} \geq 12 ^{\vee}\text{V} \\ \text{Voltage output } 0 10 ^{\vee}\text{S} \\ \end{array}$	$\begin{array}{c} \text{ug M12, 5-pin} \\ \text{Deration } -20 ^{\circ}\text{C} \dots +70 ^{\circ}\text{C} \\ \text{torage} -40 ^{\circ}\text{C} \dots +85 ^{\circ}\text{C} \\ \text{60 g} \\ \text{ickel-plated brass} \\ \\ \text{NPN: High} = \text{V}_{\text{S}}/\text{LOW} \leq 2 ^{\vee}\text{Current output } 4 \dots 20 ^{\vee}\text{mA:} \\ \text{Automatic switching between voltage} \\ \text{and current outputs dependent on load} \\ \text{R}_{\text{L}} \leq 500 ^{\circ}\text{Q}, \text{V}_{\text{S}} \geq 20 ^{\vee}\text{V}; \\ \text{R}_{\text{L}} \leq 100 ^{\circ}\text{Q}, \text{V}_{\text{S}} \geq 12 ^{\vee}\text{V} \\ \text{Voltage output } 0 \dots 10 ^{\vee}\text{S} \\ \end{array}$



UM18 Ultrasonic sensor

- Independent of material shape (also foils, glass, bottles)
- Insensitive to dirt, dust and fog
- 1 switching output or 2 switching outputs (PNP or NPN) or analogue output
- Teach-in via control input MF

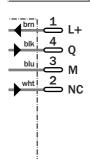
Dimensional drawing

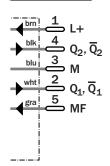

- Locking nuts, 24 mm A/F
- Connection plug M12
- LED 1 (UM18-51112, UM18-51114, UM18-11116 and UM18-11117)
- LED 2 (UM18-51112, UM18-51114, UM18-11116 and UM18-11117)

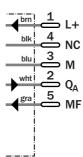
((

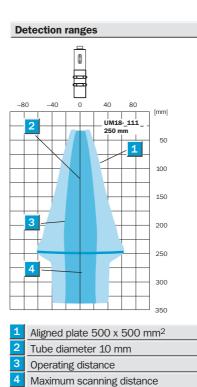
See chapter Accessories

Mounting systems






5-pin, M12


5-pin, M12

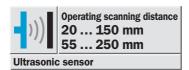
5-pin, M12

Technical data	UM18	- 51111 51112 51114 51115 51116 51117
Operating distance	30 mm 250 mm (< 350 mm)	
(maximum scanning distance)		
Ultrasonic frequency	320 kHz	
Resolution	0.36 mm	
Reproducibility	typ. ±0.15 % of final value	
Accuracy	≤ 2 % of final value	
Supply voltage V _s	$V_s = 10 30 V DC^{1}$	
Residual ripple	± 10 %	
Current consumption 2)	≤ 40 mA	
Display elements	2 yellow LEDs	
Control input MF	Teach-in; Reset	
Switching outputs	Q: PNP	
	Q: NPN	
invertable 3)	Q ₁ , Q ₂ : 2 x PNP	
invertable 3)	Q ₁ , Q ₂ : 2 x NPN	
Analogue output, invertable 3)	Q _A : 4 20 mA	
	Q _A : 0 10 V	
Response time	32 ms	
Switching frequency	15/s	
Switching hysteresis	2.0 mm ± 10 %	
Temperature compensation		
Synchronisation option		
Functional display		
ObSB-mode ⁴⁾		
Standby delay	< 300 ms	
Connection type	Plug M12, 5-pin	
Enclosure rating	IP 67	
Ambient temperature	Operating -25 °C +70 °C	
-	Storage –40 °C +85 °C	
Weight	65 g approx.	
Housing material ⁵⁾	Nickel-plated brass	
Limit values Without load	$^{3)}$ Outputs short-circuit protected $\rm I_{max}=200~mA$ PNP: High = $\rm V_S$ –($<$ 2 V)/LOW = 0 V NPN: High = $\rm V_S$ /LOW \leq 2 V	 4) Object between sensor and background 5) Plastic parts: PBT Ultrasonic transducer: Polyurethane-foam, glass epoxy resin

 Order information

 Type
 Order no..

 UM18-51111
 6028965


 UM18-51112
 6028964

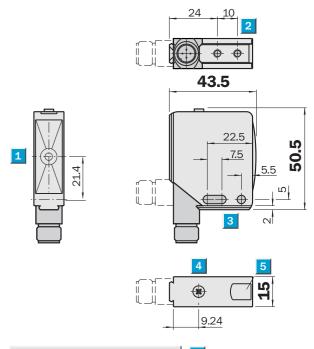
 UM18-51114
 6028973

 UM18-51115
 6028974

 UM18-11116
 6029507

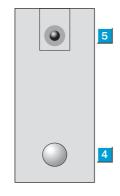
 UM18-11117
 6029508

- Independent of material shape (including films, glass and bottles)
- Teach-in
- Insensitive to dirt, dust and fog
- 1 switching output PNP/NPN
- Very good background suppression (BGS)



See chapter Accessories

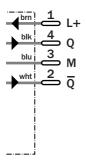
Mounting systems


Dimensional drawing

Adjustments possible

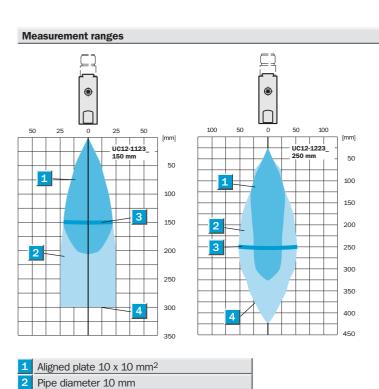
All types

- 1 Centre of sender and receiver axis
- M4 threated mounting hole 4 mm deep
- Mounting hole Ø 4,2 mm
- 4 Control element(s)
- 5 Signal strength indicator



Connection type

All types



4-pin, M12

SENSICK CATALOGUE 05-08-2006

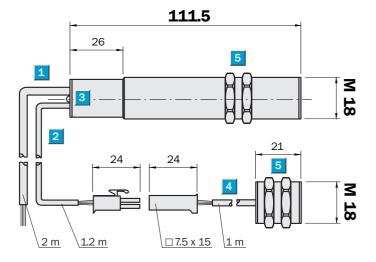
Technical data		UC12-	11231 1223	1 12235 12	2235			
		_						
Operating scanning distance	20 150 mm (250 mm)							
(limiting scanning distance)	55 250 mm (350 mm)							
Ultrasonic frequency	Approx. 380 kHz							
	Approx. 500 kHz							
Resolution	0.18 mm							
Reproducibility	typ. ± 0.15 % of final value							
Accuracy	≤ 2 % of final value							
Supply voltage V _s	10 30 V DC							
Residual ripple	10 %							
Current consumption	≤ 40 mA							
Switching output ²⁾	Q: PNP							
	Q: NPN							
Response time	27 ms							
Switching frequency	< 25/s							
Switching hysteresis	2.0 mm							
Standby delay	< 300 ms							
Indicator	Double-LED green/yellow							
Control element(s)	Teach-in button							
Connection type	Plug M12, 4-pin							
VDE protection class								
Temperature compensation	Yes							
Enclosure rating	IP 67							
Ambient temperature	Operation -20 °C +70 °C	2						
	Storage –40 °C +85 °C	С						
Weight	Approx. 75 g							
Housing material ³⁾	Nickel-plated brass							
Outputs short-circuit protected $I_{max}=200 \text{ mA}$ $PNP: High=V_S-(<2 \text{ V})/LOW=0 \text{ V}$ $NPN: High=V_S/LOW \leq 2 \text{ V}$	2) Temperature compensation at -20 +65 °C		3) Ultrasonic tra foam, glass e	,	urethane	-		

Order information Туре Order no. UC12-11231 6029831 UC12-12231 6029832 UC12-11235 6029833 UC12-12235 6029834

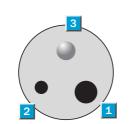
SENSICK CATALOGUE 197

Operating scanning distance Limiting scanning distance

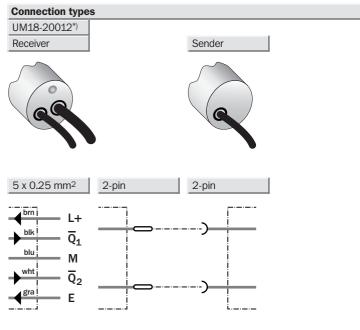
- Double-sheet detection of foils, metal sheets and ultra-fine corrugated cardboards
- Automatic adjustment, no Teach-in necessary
- Colour-independent
- Plug & Play
- 2 PNP outputs for doubleand mis-fed-sheets



((


See chapter Accessories

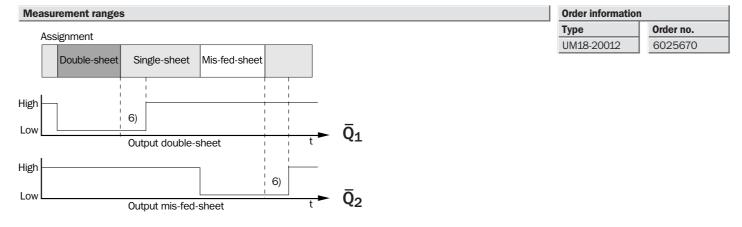
Mounting systems


Dimensional drawing

Adjustments possible
UM18-20012

- Connection cable 2 m (receiver)
- Connection cable 1.2 m, 2-pin sender and receiver
- 2-color LED indicator, receiver
- Connection cable 1 m, 2-pin sender and receiver
- Fastening nuts, width across 24 mm

*) Sender/receiver pair: Individual components on request


98 SENSICK CATALOGUE 05-08-2006

Technical data	UM18-	20012					
Installation distance							
sender – receiver	40 mm ± 3 mm						
Blind zone	7 mm, each time before sender						
	and receiver						
Permissible angle deviation	\pm 45° perpendicular to sheet						
Ultrasonic frequency	400 kHz						
Resolution	Double-sheets not completely						
	glued together						
Operational area							
Paper grams per square meter	20 1200 g/m ²						
Metal-laminated sheets and films	≤ 0.4 mm thickness						
Self-adhesive films, metal sheets	≤ 0.3 mm						
Ultra-fine corrugated cardboard							
Supply voltage V _S	20 30 V DC ¹⁾						
Ripple	± 10 %						
Current consumption 2)	≤ 45 mA						
Double-sheet switching/Q ₁ ³⁾	Q_1 : PNP, $V_S - 2 V$, $I_{max} = 500 \text{ mA}$						
Mis-fed-sheet switching output/Q ₂ ³	$Q_2:PNP, V_S - 2 V, I_{max} = 500 \text{ mA}$						
Response time 4)	2.5 ms or 6.5 ms						
Off delay	10 ms						
V _S at control unit ⁴⁾	Response time 6.5 ms: V _S > 9 V DC						
	Response time 2.5 ms: $V_S < 5$ V DC						
Standby delay	300 ms						
Connection type	Cable PVC, 2 m; 5 x 0.25 mm ²						
Sender cable 5)	PVC, 1.2 m with 2-pin plug						
Receiver cable 5)	PVC, 1 m with 2-pin plug						
Enclosure rating	IP 65						
Ambient temperature	Operation +5 °C +60 °C						
	Storage -40 °C +85 °C						
Weight	280 g						
Housing material	Nickel-plated brass						
1) Limit values	4) If the central line is laid against a ground	5\ N	1. 2				

1) Limit values

2) Without load

3) Outputs short-circuit protected, Opener; no switching hysteresis $^{4)}\,$ If the control line is laid against a ground, $\,^{5)}\,$ Not reverse-polarity protected the response time is 2.5 ms. If the control line is laid against L+, the response time is 6.5 ms.

6) Off delay

SENSICK CATALOGUE 199 05-08-2006